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Abstract
Interpreting wave phenomena in terms of an underlying ray dynamics adds a
new dimension to the analysis of linear wave equations. Forming explicit
connections between spectra and wavefunctions on the one hand and the
properties of a related ray dynamics on the other hand is a comparatively new
research area, especially in elasticity and acoustics. The theory has indeed been
developed primarily in a quantum context; it is increasingly becoming clear,
however, that important applications lie in the field of mechanical vibrations
and acoustics. We provide an overview over basic concepts in this emerging
field of wave chaos. This ranges from ray approximations of the Green function
to periodic orbit trace formulae and random matrix theory and summarizes the
state of the art in applying these ideas in acoustics—both experimentally and
from a theoretical/numerical point of view.
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1. Introduction

1.1. General remarks

We will in this review focus on the solutions of linear wave equations describing acoustic or
vibrational phenomena; we will relate these solutions to an underlying ray dynamics generated
by, in general, nonlinear ordinary differential equations or maps. We approach the field from
two main directions: we first consider explicit connections between ray and wave dynamics
on the level of individual system. In a second approach, universal behaviour of wave solutions
are considered from a statistical point of view. We will in the following work in the continuum
approximation disregarding the underlying discreteness of materials in terms of atoms and
molecules. We will thus not consider the quantum limit of elasticity, that is, the existence of
quantized lattice vibrations or phonons.

The theory describing linear wave equations in the form of ray solutions is well established
using Eikonal or WKB techniques, and the limitations of such approximations are understood
in principle. In the last few decades, the interest shifted towards relating the solutions of
linear wave equations to the dynamical properties of the underlying ray dynamics. It could be
shown that dynamical features ranging from regular to purely chaotic behaviour leave distinct
fingerprints in the solutions of associated wave equations. The theory has mainly advanced in
a quantum context giving rise to the name quantum chaos. Schrödinger’s equation is a scalar,
linear wave equation and is in that respect not very different from other physically relevant wave
equations such as in optics or linear elasticity. The ‘weirder’ properties of quantum mechanics,
as for example, the measurement process or the violation of Bell’s inequalities are in fact not
considered in semiclassical approaches to quantum mechanics. In that sense, techniques and
insights from quantum chaos can and have been applied to classical wave equations such as in
optics, elastodynamics or acoustics giving rise to a much broader field often referred to as wave
chaos. In fact, many of the methods and concepts used and developed in quantum chaos have
been considered independently in the optics and engineering community, and developments
have run in parallel often with little cross fertilization.

The main goal of this review is to bring the different approaches and communities
together and to discuss progress in the theory of elasticity and acoustics where it has a
distinct wave chaos component. To keep the review at a manageable length, we will not
consider developments in optics such as the studies on flat microwave cavities reviewed by,
for example, Stöckmann (1999) and Kuhl et al (2005) or wave chaos applications to micro
cavity lasers by Nöckel and Stone (1997). Likewise, we shall only briefly discuss diffraction
in section 4.1 which may lead to randomness and disorder and thus wave chaos effects (Efetov
1997). Indeed, we will in general consider wave scattering on obstacles large compared
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to typical wavelengths; ‘randomness’ is thus introduced through the chaoticity of the ray
dynamics alone and is independent of the wavelength in contrast to diffractive wave-scattering
effects.

The name quantum or wave chaos has led to a considerable amount of confusion,
prompting Michael Berry to promote the name quantum chaology instead (Berry 1987, 1989).
It is thus important to stress that

(a) we do only consider properties of linear wave equations; we are not concerned with
nonlinear wave effects becoming important when going beyond the linear approximations
in acoustics and elasticity theory as considered by Lauterborn and Cramer (1981),
Lauterborn and Holzfuss (1991), Hamilton and Bladstock (1998) and Dong et al (2001);

(b) we are not primarily interested in possible chaotic behaviour of the solutions of the linear
wave equations which can only exist as a transient effect due to the linearity of the
underlying partial differential equation (PDE), and

(c) we do not study the ‘classical’ limit, that is, the transition from a wave dynamics to
a deterministic ray dynamics; this limit lies in fact outside a semiclassical approach
considering k → ∞ with k being a typical wave number in the system.

We will instead adopt the now generally accepted definition of wave or quantum chaos: we
consider the wave properties of systems described by linear wave equations which have an
associated ray or classical dynamics being chaotic.

The research field can roughly be divided into two areas: firstly, one can express wave
operators such as Green functions in terms of the ray dynamics using semiclassical or
large wave number asymptotics which will be considered in section 2. Secondly, there is
a connection between statistical properties of spectra and eigenfunctions (or modes) of wave
systems on the one hand and random matrix theory (RMT) on the other hand. Here, the
random matrix ensembles in question depend on properties of the underlying ray dynamics
and symmetries of the problem and will be reviewed in section 3. From a quantum chaos
perspective, both these areas have been covered in a series of textbooks (Gutzwiller 1990,
Brack and Bhaduri 1997, Stöckmann 1999, Haake 2001, Cvitanović et al 2006) and review
articles (Guhr et al 1998, Tanner et al 2000, Kuhl et al 2005) and will thus only be considered
in as far as links between wave chaos and elasticity exist. We would like to also mention the
article collections edited by Sebbah (2001) and Fink et al (2002) which may serve as an ideal
starting point for a more in-depth introduction into this research area from an acoustics point
of view.

Our emphasis will be on a ray analysis of wave phenomena in the presence of multiple
scattering events and ray chaos. A ray description is common in elasticity especially
when considering scattering of elastic waves at interface boundaries. The interpretation of
seismographs in terms of wave pulses moving on curved rays in the earth, for example, is one
of the basic applications of ray methods. Especially, the ray conversion between longitudinal
and transversal wave components and the excitation of surface waves giving rise to earthquakes
such as Rayleigh waves on solid–air interfaces or Lamb waves at the sea bottom have been
studied in great detail (Brechovskich 1980). Processes entailing only a few scattering events
such as reflection on multi-layered surfaces (Brechovskich 1980) or scattering of obstacles
such as cracks (Achenbach et al 1982) are often studied in a WKB-type approach along rays
obeying Fermat’s principle of shortest travel time. Effects related to the boundary conditions
such as surface waves or diffraction can be treated by considering ray dynamics in the complex
plane (Keller and Karal 1960, 1964, Rulf 1969). These studies are important in the geophysical
domain as well as for non-destructive evaluation using ultrasound to investigate materials for
cracks and defects.
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In the examples above, wave signals are often treated in terms of only a few ray paths where
interference effects play no or only a minor role. This changes drastically when extending
a ray analysis to long-time wave dynamics including multiple scattering; examples are wave
propagation in reverberant bodies of finite size undergoing multiple reflections on the boundary
or open systems containing many, disordered scatterers. The number of ray paths reaching a
point r from a source point r0 will then grow quickly with the travel time due to scattering off
boundaries. Not including mode conversion, the proliferation of possible paths with time is a
power law for systems associated with an integrable ray dynamics. For chaotic behaviour, the
effect is even more drastic leading to an exponential increase of ray trajectories connecting
r0 and r in time t (Gutzwiller 1990). The possibility of mode conversion at boundaries gives
additional contributions as discussed in sections 2.2.3 and 2.3.

Waves travelling along different paths will interfere leading to complicated wave patterns.
A ray analysis may thus indeed seem hopeless here. We will demonstrate that this is not
necessarily the case and review quantum chaos techniques and their modifications to an
elastodynamics setting in section 2.1. The vectorial nature of the wave equations and the
phenomenon of wave splitting due to mode-dependent wave speeds leads to a multi-component
classical ray dynamics. This gives rise to new dynamical features not possible in ordinary
Hamiltonian dynamics as discussed in section 2.2. Applications of ray chaos effects in wave-
splitting billiards, section 2.3, time-reversal imaging (TRI), section 2.4, and its connection to
fidelity decay, section 2.5, as well as underwater acoustics in section 2.6 will be reviewed.

Statistical considerations will be treated in section 3. Some of the aspects of RMT and
wave chaos have been reviewed recently by Kuhl et al (2005) in the context of chaotic wave
scattering. A partly complementary overview will be given in section 3.1; it includes a short
overview on RMT as well as key results from experiments on elastic bodies. We will point out
how wavefunction statistics and cross-correlation functions are related to the Green function in
section 3.1.4 and discuss weak localization effects in section 3.1.5. In practical applications,
absorption and other dissipative channels always play a large role in acoustic problems; a
realistic treatment thus needs to take into account losses of wave energy, that is, the openness
of the wave problem. In section 3.2 we focus on a statistical approach towards transport of
wave energy in dissipative wave systems leading to an RMT treatment of correlation functions
and higher moments of the Green function. We conclude this section by discussing the relation
between wave chaos and a method widely used in engineering applications for estimating the
flow of vibrational energy in large structures, statistical energy analysis (SEA) in section 3.3.

We close the review by giving an outlook on possible further applications of wave chaos
methods in elasticity. We highlight some of the areas where there are still plenty of unresolved
problems; these are in particular diffraction effects, the influence of curved surfaces, or the
impact on the wave dynamics due to anisotropy of the material. These topics are discussed in
section 4.

1.2. Basic wave equations

We start by introducing the linear wave equations discussed in more detail in this review.
We will restrict ourselves to wave propagation in solids, fluids and gases in the continuum
approximations and for small deformations. Similar wave equations appear frequently in the
context of electromagnetism or quantum mechanics, however, often in a different setting; we
will thus focus on applications to acoustics and elasticity throughout.

Linear elastodynamics has applications ranging from acoustic and structural engineering
to seismology. Typical time scales are much larger than in the optical or quantum regime with
sound speeds and frequencies allowing for time-resolved measurements of wave signals. We
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will in the following assume that the wave equations are not explicitly time dependent due to,
for example, time-dependent variations in material densities, and we work in the frequency
domain if not stated otherwise.

Wave equations in continuum mechanics are only linearized approximations and the
applicability of the equations are limited by nonlinear terms and dissipation. Including these
nonlinearities can lead to chaotic effects due to nonlinear interactions between acoustic waves,
also referred to as ‘Acoustic Chaos’ in the literature (Lauterborn and Cramer 1981), Lauterborn
and Holzfuss (1991), Hamilton and Bladstock (1998) and Dong et al (2001). These effects are
beyond the scope of this review and are negligible in many applications. ‘Wave Chaos’, as we
understand it here, refers solely to linear wave problems where chaos is introduced through
the underlying ray dynamics.

1.2.1. The Helmholtz equation. One of the most important wave equations in the context
of continuum mechanics is the scalar Helmholtz equation describing, for example, acoustic
pressure waves in fluids and gases, vibrations of thin membranes, shallow water waves,
electromagnetic waves in thin cavities and a free quantum particle in a finite domain, a
so-called quantum billiard.

The Helmholtz equation can be derived from a linearization of the Navier–Stokes equation
in the adiabatic approximation and has the form (for constant density ρ)

c2��(r) + ω2�(r) = 0. (1)

Here, � is a scalar function such as the variation in pressure P (in dimensionless units) and
c2 = (∂P/∂ρ)S denotes the wave velocity (where the derivatives are taken in the adiabatic
limit at constant entropy S). The latter is, for example, c = √

T/ρ for vibrating membranes
with T, the tension applied at the boundary. In the more general case of inhomogeneous fluids
(Brechovskich 1980), the equation for the pressure variation P becomes

∇ ·
(

1

ρ(r)
∇P

)
+ κ(r)ω2P = 0, (2)

where κ(r) is the adiabatic compressibility. The general form, equation (1), is recovered when
switching to ψ = P/

√
ρ with a new effective wave number ω/c depending on position r.

In acoustics, damping caused by viscous or non-adiabatic effects plays an important role
where the latter are due to the finite thermo-conductivity of the medium. In addition losses at
interfaces and boundaries can be quite substantial; typical boundary conditions are Dirichlet,
Neumann or Robin boundary conditions. More complicated conditions may apply if energy
transfer at interfaces such as at fluid/solid boundaries becomes important as discussed by
Temkin (1981) and Kinsler et al (1999).

Going from a wave to a ray pictures, one writes the wavefunction in the form

�(r) = A(r) eiS(r);
After inserting � into (1) and neglecting terms of the form �A/A � (ω/c)2, this leads to the
Eikonal equation for the phase S, that is,

c2(r)(∇S)2 = ω2. (3)

The PDE (3) is a Hamilton–Jacobi equation which can be solved by the method of
characteristics. After defining the wave number k ≡ ∇S (referred to as momentum p in
the context of classical mechanics) and the Hamilton function

H(k, r) = c2(r)k2 = ω2, (4)
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one obtains the ray trajectories (r(τ )), k(τ )) from Hamilton’s equations
d

dτ
r = ∇kH = 2c2k; d

dτ
k = −∇rH = −2ck2∇c. (5)

Here, τ is a fictitious time conjugate to the energy E = ω2 which is related to the real time by
t = 2ωτ . This translates into the more common equations of motion

ṙ = ck̂; k̇ = −ω

c
∇c. (6)

The dimensionless action S is given as

S(r, r0) =
∫

dr′ · k(r′), (7)

where the integration is taken along a ray from r0 to r. An r dependence of the ‘mass’ term
m = 1/2c2 gives rise to bending of ray trajectories. The ray equations (5) may also be obtained
by a principle of least action, referred to as Fermat’s principle in optics. This principle leads
to an effect often observed for example in seismology; the apparent wave velocity, that is, the
ratio of the distance L between source and receiver point and the pulse travel time, increases
with L. Following Fermat’s principle in inhomogeneous media, it is easier to find an optimal
path avoiding regions with high density and slow local velocities for longer ray trajectories
than for short rays. The theory including scaling laws and the onset of saturation has been
worked out in (Tworzydlo and Beenakker 2000) using methods from structure optimizations
for polymers.

1.2.2. The biharmonic equation. The flexural motion of a plate of constant thickness and
without curvature is well described by the biharmonic wave equation (Landau and Lifshitz
1959)

D

ρh
�2� − ω2� = 0, (8)

where the scalar ‘wavefunction’ �(x, y) now corresponds to the displacement amplitude
normal to the plate. The flexural rigidity D is given as

D = Eh3

12(1 − σ 2)
(9)

with material constants referring to Young’s modulus of extension, E, and the Poisson ratio,
σ ; h is the thickness of the plate. The biharmonic equation can be derived from the basic
equations of elastodynamics, see (14) below, by assuming a vanishing component of the stress
tensor normal to the plate; this approximation is called the Kirchhoff–Love model (Love 1944,
Achenbach et al 1982). If the assumption of no curvature is relaxed one arrives at the more
general shell theories discussed in section 4.2.

Common boundary conditions are clamped

� = 0, ∂�/∂n = 0, (10)

simply supported

� = 0,
∂2�

∂n2
+ σ

dθ

dt

∂�

∂n
= 0, (11)

or free boundary conditions

−∂��

∂n
+ (1 − σ)

∂

∂t

[
cos θ sin θ

(
∂2�

∂x2
− ∂2�

∂y2

)
+ (sin2 θ − cos2 θ)

∂2�

∂x∂y

]
= 0

�� + (1 − σ)

(
2 sin θ cos θ

∂2�

∂x∂y
− sin2 θ

∂2�

∂x2
− cos2 θ

∂2�

∂y2

)
= 0,

(12)
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where n and t refer to the normal and tangential direction at the boundary in the plane of the
plate and θ = � (r, n) (Landau and Lifshitz 1959). Note that plates also support wave modes
related to deformations in the plane of the plate. These in-plane deformations are discussed
in the following paragraph and, in the context of shell theory, in section 4.2.

The wave equation (8) factorizes in the form

(� − k2)(� + k2)� = 0 with k4 = ρh

D
ω2 (13)

giving rise to strong dispersion and propagating and decaying solutions. The latter exist
near boundaries, whereas the former obey the Helmholtz equation with conventional ray
dynamics. The boundary conditions lead to mixing between propagating and decaying modes
resulting in non-trivial phase shifts for the propagating wave field far from the boundaries, see
section 2.2.2.

1.2.3. Wave equation for isotropic elastic bodies. The propagation of elastic deformations in
a three dimensional, isotropic body written in terms of the forces acting on volume elements
has the form

∇ · σ(u) = ρ
∂2

∂t2
u. (14)

Here u(r) describes the displacement from the equilibrium position r and

σij = λ∂kukδij + µ(∂iuj + ∂jui) (15)

is the isotropic stress tensor representing the force Fi acting on the surface dAj where, the
summation convention is used. The wave equation (14) can be written in terms of the Navier–
Cauchy equation which in the frequency domain has the form

µ�u + (λ + µ)∇(∇ · u) + ρω2u = 0, (16)

with material constants λ, µ, the so-called Lamé coefficients; see Landau and Lifshitz (1959),
Bedford and Drumheller (1994) as well as a review by Weaver (2001) for an introduction.

Introducing elastic potentials � and  by using standard Helmholtz decomposition of the
displacement field u, that is,

u = up + us with up = ∇�, us = ∇ × , (17)

the Navier–Cauchy equation reduces to two Helmholtz equations, that is,(
� + k2

p

)
� = 0; (

� + k2
s

)
 = 0 with kp,s = ω/cp,s, (18)

where kp,s stands for the wave numbers for pressure (longitudinal) and shear (transversal) wave
components, respectively. The wave velocities are different for the two different polarizations,
that is,

cp =
√

λ + 2µ

ρ
=

√
E(1 − σ)

ρ(1 + σ)(1 − 2σ)
; cs =

√
µ

ρ
=

√
E

2ρ(1 + σ)
. (19)

Note, that pressure waves are always faster than shear waves.
By setting  = (0, 0, )t , one obtains the wave equation (16) in two dimensions

describing in-plane deformations in plates (plane stress) or wave propagation in bodies
extending to infinity along one axis (plane strain). In the case of plane stress, the longitudinal
wave speed is given as

cp =
√

E

ρ(1 − σ 2)
. (20)
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θ θ
θ

p
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sss

s

Figure 1. Wave splitting for in-plane waves at the boundary; here, conversion from an incoming s
wave to an s and p wave are shown.

A more careful treatment of in-plane and flexural modes in plates solving explicitly the infinite
plate problem leads to the Rayleigh–Lamb dispersion relations. These contain the plate and
bulk dispersion relations in equations (13) and (18) only in the limit of ω small compared to
the cut-off frequency; the next-to-leading order terms in a expansion in ω have been given by
Bertelsen et al (2000).

The wave equations (18) couple at boundaries for typical boundary conditions. For
example, if no forces act on the boundary, that is, free boundary conditions apply, one obtains

t(u) = σ(u) · n = 0, (21)

Here, t is called the traction and n denotes the normal to the boundary. For a free boundary
there are still non-vanishing tangential stresses as discussed in (Pao and Mow 1971, Achenbach
et al 1982); one has: σtt �= 0, whereas σnn = σnt = σtn = 0 with t denoting the directions
tangential to the boundary.

The ray dynamics related to the vectorial PDE (16) consists of longitudinal and transversal
components propagating according to (4) with different velocities. Formally, this can be
derived via a WKB-ansatz, see Achenbach et al (1982) or from the free Green function in the
limit of large wave numbers (Musgrave 1970). For inhomogeneous media, a WKB treatment
can be found in (Cervený 1985, Brechovskich 1980) taking into account variations in the
density. In isotropic bodies, the two polarizations are decoupled in the interior giving rise
to independent ray paths. Fermat’s principle leads to a modified Snell’s law at impact with
boundaries according to

cp

cs

= sin θp

sin θs
, (22)

where θp, θs denote the angle of incident or reflection of the pressure and shear wave,
respectively, measured with respect to the normal to the surface, see figure 1. This leads to mode
conversion and ray splitting at boundaries with reflection coefficients obtained asymptotically
from solving the wave equation (16) for plane waves impacting on a straight boundary; for
free boundary conditions one obtains (Landau and Lifshitz 1959, Couchman et al 1991, 1992)

αpp = sin 2θs sin 2θp − κ2 cos2 2θs

sin 2θs sin 2θp + κ2 cos2 2θs

αss = αpp

αps = −αsp and α2
pp + α2

sp = 1,

(23)
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where αππ ′ relates components normal to the boundary of incoming waves of polarization
π ′ ∈ {p, s} to outgoing waves of polarization π and κ = cp/cs � 1. Defining |aππ ′ |2 as the
proportion of the energy density of the wave undergoing transition from π ′ → π , one obtains

aππ ′ =
√

cπ cos θπ

cπ ′ cos θπ ′
αππ ′ , (24)

with |αππ ′ |2, the ratio of the corresponding energy fluxes normal to the boundary (with normal
velocity cπ cos θπ ). The unitarity of α implies flux conservation normal to the boundary.

When taking into account boundaries, solutions for problems such as scattering from
the infinite half plane or the interior/exterior wave problem for a circular plate/hole can be
treated analytically, see for example Landau and Lifshitz (1959), Keller and Karal (1964),
Søndergaard and Tanner (2002) and Wirzba et al (2005). Apart from these simple geometries,
numerical or approximative techniques need to be employed for solving wave problems in
elasticity. Such an analysis is complicated by the fact, that for the Navier–Cauchy equation, the
solutions for corners are not known in a closed form. In the following section, we will review
asymptotic methods covering the high-frequency regime and connecting wave problems to a
ray dynamics.

2. Wave dynamics—a ray perspective

The idea of wave energy travelling along rays is a useful guiding principle in wave propagation
problems in acoustics and elastodynamics, especially in areas such as underwater acoustics,
seismology or acoustic microscopy (Briggs 1992). The connection between wave problems
and the details of an underlying long term ray dynamics has been considered very early in
room acoustics (Joyce 1975), more systematic studies started, however, only in the late 1980s.
In many applications, it is indeed only the early arrival times of acoustic signals which are
considered important. This part of the signal is related to short ray paths with relatively
simple dynamics. For earthquakes, for example, it is the early signal which causes most of
the destruction at well-defined arrival times from the epicentre; the seismic signal arriving at
later times, the so-called seismic coda, is in general incoherent and has received attention only
recently in the context of reconstructing the Green function from cross-correlated data, see
section 3.1.4. Acoustic signals undergoing multiple scattering such as the propagation through
a disordered media, in room acoustics or in determining the distribution of vibrational energy
in large build-up structures, often show seemingly random fluctuations. Statistical methods
are favoured, here, which imply certain assumptions on the underlying ray dynamics such as
ergodic or diffusive behaviour. These methods disregard the actual ray dynamics completely
and can describe generic, universal features of wave systems; the techniques will be discussed
in more detail in section 3 in the context of random matrix theory.

The relation between wave and ray dynamics became a focus in quantum mechanics in the
early 1990s. Gutzwiller’s progress on small wavelength approximations of the Green function
in the time and frequency domain (Gutzwiller 1990) as well as uncovering the duality between
eigenfrequencies and periodic rays in the asymptotic regime offered a new way forward for
studying the imprint of regular or chaotic ray dynamics on the associated wave problem. In
the acoustics community, this way of thinking has been picked up in the early to mid 1990s
(Weaver 1989a, 1989b, Ellegaard et al 1995, 1996, Fink 1997, Tappert and Brown 1996) and
is receiving increasing attention in an engineering context.

We will focus in this section on the interplay between wave and ray dynamics. We
start by briefly reviewing short wavelength approximations of Green functions and related
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operators derived in a quantum context. This is followed by a survey of wave versus ray chaos
aspects in acoustics and elastodynamics including a discussion on trace formulae for elastic,
isotropic bodies in section 2.2 and ray-splitting billiards in section 2.3. We will then introduce
the concepts of time-reversal imaging in section 2.4 based on the time-reversal invariance of
both the ray and wave dynamics and finally discuss wave chaos aspects in ocean acoustics in
section 2.6.

We will in the following assume that absorption can be neglected and that the problems
considered are not explicitly time dependent. We will avoid references to quantum mechanics.
The high-frequency or semiclassical limit is thus understood in the sense that the wavelength
is small compared to typical dimensions such as the size of the resonator. This limit is formal
as ultimately the wavelength becomes as small as the inter-atomic distances in the medium
and the continuum approximation breaks down. In the case of a single-crystal resonator, for
example, the actual phonon dispersion relation should then be used. We will not consider
such complications, but merely note that ballistic effects have been observed experimentally
also for phonons by Hensel and Dynes (1977) and Northrop and Wolfe (1979). For isotropic
media, often produced through fusion thus destroying the crystal structure, there is a minimum
grain size at which the continuum approximation breaks down Weaver (2001). Likewise, cut-
off effects may become important for wave propagation in plates or membranes when the
thickness becomes comparable to the wavelength and nonlinear terms enter the wave equation
for large excitations, which will, however, not be our primary concern here.

We end this introductory part with a general note. In acoustics, a distinction is often made
between a ray, wave or modal picture. In the terminology of semiclassics, rays correspond to
the classical limit, wave dynamics refers to wave packet propagation and modes are related to
the eigenfunctions or wavefunctions of the system, respectively. The main emphasis in this
section is thus on describing eigenfrequencies and eigenfunctions in terms of an underlying
classical, long-term ray dynamics; this is in contrast to traditional approaches in acoustics
classifying arrival times for wave packets or impulses in terms of a ray picture for short times.

2.1. A brief review of quantum chaos

Quantum spectra and wavefunctions are influenced by the underlying classical ray dynamics
in an intricate way. While the wave equations are linear thus obeying the superposition
principle, the often nonlinear dynamics of the ray motion manifests itself in a wide range of
wave phenomena. Wave systems being integrable in the classical limit tend to be ordered and
a set of integer ‘quantum numbers’ can be assigned to each eigenfrequency. Wavefunctions
are localized on classical tori and there are no correlations between levels corresponding
to series with different quantum numbers. Quite the opposite is true for wave problems
related to classically chaotic systems; the eigenfrequency spectra have no obvious structure
and wavefunctions are extended over the whole phase space3. Eigenfrequency statistics is
again very different for systems with an integrable or a chaotic classical counterpart as will be
discussed in more detail in section 3.

A convenient starting point for a semiclassical treatment is the Green function in the time
and frequency domain solving(

− ∂2

∂t2
− Ĥ

)
Ĝ(r, r0; t) = δ(r0 − r)δ(t); (25)

(ω2 − H)G(r, r0;ω) = δ(r0 − r), (26)
3 Phase-space representations of wavefunctions can be obtained by suitable transformations such as the Wigner
transformation, see Gutzwiller (1990).
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where H is a time-independent wave operator such as listed in section 1.2. In the following,
we will consider hyperbolic wave equations and the spectral parameter is thus not E/h̄ but the
square of the frequency. Note that Ĝ(t) and G(ω) are related by Laplace transformation.

Gutzwiller derived a semiclassical expression for the quantum propagator Ĝ(r, r0; t)

starting from Feynman’s path integral (Feynman and Hibbs 1965). Using stationary phase
approximation, Ĝ can be written as a sum over all possible classical trajectories from r0 to r in
the time t, see Gutzwiller (1990). Such a treatment is not immediately amendable to hyperbolic
wave equations as listed in section 1.2 due to time-ordering problems. A formulation in terms
of path integrals has been proposed by adding an additional (fictitious) time variable to the
time-independent problem (26) and constructing an artificial parabolic equation (Schulman
1981, Bothelho and Vilhena 1994) or by employing parabolic approximations of the original
equations (Dashen 1979, MacDonald and Kuperman 1987, Dacol 1994) such as discussed in
section 2.6. For an exact treatment of arrival time problems in acoustics and elasticity see
the discussion by Miklowitz (1978) and Hudson (1980). We circumvent the problem here
by focusing on time-independent problems considering the Green function in the frequency
domain, equation (26); it has the same structure irrespective of whether the associate time-
dependent PDE is hyperbolic and parabolic and can thus be expressed in terms of the same
semiclassical formulae.

The Green function exhibits poles at the eigenfrequencies or resonances; for closed
systems, G may be written in terms of the real eigenfunctions (or modes) un which for scalar
wave equations reads

G(r, r0, ω) =
∑

n

un(r)un(r0)

ω2 − ω2
n

. (27)

In the high-frequency limit, G may be approximated using expressions derived in a quantum
context. For short distances and direct paths with |r − r0|k ∼ 1, the Green function can be
written in terms of the free Green function with local wave number k = k(r). Contributions
from paths long compared to the wavelength give rise to the approximate form

Gsc(r, r0;ω) = π

ω

1

(2π i)(d+1)/2

∑
cl.tr

r→r0

√
|D| exp

[
iS(r, r0;ω) − iµ

π

2

]
, (28)

where d is the dimension of the system and the sum is over all classical paths from r0 → r
on the energy manifold H(p, r) = ω2. The Hamilton function H is given for example by
equation (4). The action S(r, r0;ω) defined in (7) is taken along the classical path. The
amplitude can be written as

D(r, r0;ω) = 1

|ṙ||ṙ′| det

(
∂2S

∂ri∂rj
′

)
, (29)

where ṙ′, ṙ are the velocities at the start and end points of the trajectory and the partial
derivatives are taken in a local coordinate system perpendicular to the classical path, see
Gutzwiller (1971, 1990). The integer index µ counts the number of caustics or singular points
for which D−1 = 0 along the classical path on the energy manifold. The validity of (28) is
so far independent of the type of the underlying classical dynamics, e.g. chaotic, integrable
or mixed behaviour. Deviations from the exact Green functions due to the stationary phase
approximation are most prominent at classical caustics where the amplitudes D(r, r0;ω)

diverge. Note that the semiclassical approximation contains wave-like elements such as
the interference of paths, but can in this form not account for effects such as diffraction or
tunnelling. These can be incorporated by including non-classical paths in terms of solutions
of the complexified equations of motion (5) as discussed by, for example, Keller and Karal
(1962) and Creagh (1996).
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2.1.1. Trace formulae and spectral determinants. The information about the eigenfrequency
spectrum {ωn} is contained in the trace of the Green function

g(ω) = Tr G(ω) =
∫

ddr G(r, r;ω) ∼
∑

n

1

ω2 − ω2
n

. (30)

For systems of finite size, the density of states is related to the trace by

d(ω) =
∑

n

δ(ω − ωn) = −2ω

π
lim

ε→0+
Im g(ω + iε). (31)

Inserting the semiclassical approximation, (28), into (30) and evaluating the resulting
integrals by stationary phase leads to unphysical singularities near bifurcation points in mixed
regular and chaotic systems. Closed semiclassical expressions for the trace in its simplest form
can thus be given only for integrable or completely chaotic systems. The trace can in both
cases be written as a sum over classical periodic orbits of the system; this establishes a Fourier
relation between the eigenfrequencies of a wave system and the set of periodic orbits of the
underlying ray dynamics. Bifurcations can be taken into account using uniform approximation
which leads to contributions going beyond Gutzwiller’s treatment, see for example Schomerus
and Sieber (1997).

Trace formulae. In integrable problems such as the ray dynamics in rectangular or spherical
cavities, phase space can be foliated in terms of invariant tori and the Hamiltonian can
in action-angle variables be written as a function of the actions I alone. Approximations
to the eigenfrequencies can be obtained in terms of the Einstein–Brillouin–Keller (EBK)
condition, the multidimensional generalization of WKB quantization in one dimension.
Periodic boundary conditions on the tori demand

Imj
= 2π

(
mj +

σj

4

)
, mj ∈ N and j = 1, . . . , d, (32)

where the integer Maslov index σj labels the number of caustics along a 2π rotation in the
angle φj conjugated to Ij . The eigenfrequencies are then obtained by Gutzwiller (1990)

ω2
m = H(Im1 , . . . , Imd

). (33)

The corresponding wavefunction (in Wigner representation) is localized on the torus Im (Berry
1977a, Ozorio de Almeida and Hannay 1983). For integrable systems, the integration in (30)
can be performed in angle variables giving rise to contributions from continuous families of
periodic orbits on tori with rational winding numbers. The resulting periodic orbit formula is
equivalent to the EBK quantization (33) (Berry and Tabor 1976, 1977a).

The other extreme case, hard chaos, is characterized by ergodic classical motion with
exponential separation of neighbouring trajectories. Inserting expression (28) into (30), only
those trajectories contribute which close in coordinate space. The main contributions to the
trace integral come from stationary phase points giving rise to the additional condition k = k′,
that is, the initial and final momentum coincides. The trace can thus be written as a sum over
(unstable) periodic orbits of the chaotic system and the density of states takes on the form
(Gutzwiller 1990),

d(ω) ≈ d(ω) +
1

π

∑
po

Tpo

∞∑
r=1

cos(rSpo(ω) − rσpoπ/2)√∣∣det
(
Mr

po − 1
)∣∣ . (34)

The first sum is taken over all periodic orbits (po) of the classical ray system and the sum over
r accounts for the repetitions. In a chaotic system, these orbits form a dense set of measure
zero in phase space. The action S is taken along the orbit and T represents the period. The
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Monodromy or stability matrix M is the Jacobian matrix of the full phase space flow in a
reduced local phase-space coordinate system perpendicular to the trajectory and on the energy
manifold. It describes the linearized dynamics in the neighbourhood of the orbit after one
revolution. The stability of a periodic orbit is characterized by the eigenvalues � of M. The
integer index σ , also called the Maslov index, is closely related to the number of caustics µ

in (28). It is equivalent to a winding number counting twice the number of revolutions of the
stable or unstable eigenvectors of M around the periodic trajectories as investigated in (Creagh
et al 1990, Robbins 1991).

The smooth part d(ω) originates from contributions of the form limr→r′G(r, r′, ω) giving
rise to the mean level density, also called the Thomas–Fermi contribution in atomic physics
or the Weyl term in the context of resonators, see section 2.2.1 for details. For scalar wave
equations of the Helmholtz-type, one obtains in leading order

d(ω) = 2ω

(2π)d

∫ ∫
ddr ddk δ(ω2 − H(p, r)), (35)

see for example Gutzwiller (1990).

Spectral determinants. It is sometimes advantageous to consider the so-called spectral
determinant

D(ω) = det(ω2 − Ĥ ) =
∏
n

(
ω2 − ω2

n

)
which has zeros at the position of the eigenfrequencies; it is obtained from the trace (30) via
the relation D(ω) = exp

( ∫
2ωg(ω) dω

)
. Making use of (34) valid for chaotic systems, one

obtains

Dsc(ω) ∼ e−iπN(ω)
∏
po

exp

⎡
⎣−

∞∑
r=1

exp [ir(Spo(ω) − σpoπ/2))

r

√∣∣det
(
Mr

po − 1
)∣∣

⎤
⎦ (36)

= e−iπN(ω)ζ−1
sc (ω),

where N denotes the smooth part of the spectral staircase

N(ω) =
∫ ω

0+
dω′d(ω′). (37)

The integration over frequency is carried out using the relation Tpo = ∂Spo/∂ω. The last
equality defines the semiclassical zeta function ζ−1 which for bound problems has properties
reminiscent of the Riemann zeta function (Titchmarsh 1986, Berry 1986, Brack and Bhaduri
1997).

The S–matrix and periodic orbits. The periodic orbit formulae discussed in the previous
sections are valid also for open systems provided the Green function has been appropriately
regularized before taking the trace. In acoustics, one often considers waves scattering from
walls or other obstacles in an otherwise open setting, where it is more useful to work with the
scattering matrix directly. For a more in depth discussion of open systems, see section 3.2 and
especially section 3.2.2.

A connection between the S-matrix and the trace of the Green function (and thus periodic
orbit formulae) is provided by Krein’s formula (Krein 1953)4

2ω lim
ε→0

Im Tr[G(ω2 + iε) − G0(ω
2 + iε)] = i

2

d

dω
log det S(ω). (38)

4 Strictly speaking, (38) is applicable only after considering the whole system in a large box to obtain a discrete
spectrum for both G and G0. The imaginary part of the traces is (up to a factor of π ) the level density (31); it is
properly defined only by setting Im TrG(ω2 + iε) := − i

2 [TrG(ω2 + iε) − TrG(ω2 − iε)]. Letting the box radius go
to infinity before taking ε to zero provides the finite, nontrivial result.
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(See also equation (80) defining a relation between the Green function and the scattering
matrix in the presence of well-defined scattering channels.) The periodic orbit contributions
are contained in the trace of the total Green function G, whereas the reference Green function
G0 regularizes the expressions for r → ∞.

One obtains the determinant of the S-matrix in terms of semiclassical zeta functions after
formally integrating and exponentiating (38) on both sides. Splitting the imaginary part into
a contribution from the upper and the lower complex energy half plane, one obtains:

det S(ω) = e−2π iÑ(ω) ζ
−1
sc (ω∗)∗

ζ−1
sc (ω)

. (39)

The zeta function ζ−1
sc (ω) introduced here is defined in (36); the product is taken now over

all classical periodic orbits trapped in the scattering system. The phase Ñ(ω) is the effective
phase-space volume of the scatterer (Smilansky and Ussishkin 1996); its derivative with
respect to energy is directly related to the mean delay time due to the scattering process, also
referred to as the Wigner–Smith time delay (Wigner 1955, Smith 1960). Equation (39) reveals
the connection between the zeros of the zeta function and the poles of the S–matrix. The
resonances of a scattering system are thus again intimately connected to the classical periodic
orbits.

The semiclassical formulae (34), (36) and (39) establish Fourier relations between
eigenfrequencies or resonances of a wave systems and the periodic orbits of the related classical
or ray dynamics. The classical ingredients, such as, actions, stabilities and winding numbers
of periodic orbits as well as the eigenvalues, are invariant under coordinate transformation and
so are the quantum and semiclassical traces. Note, however, that both for classically chaotic
as well as for integrable systems, it is the sum over all periodic orbits which gives rise to the
poles at the eigenenergies.

2.1.2. The transfer operator and semiclassical quantization conditions. The periodic orbit
formulae (34) or (36) for chaotic systems are not absolutely convergent for real energies
E = ω2 as discussed in (Eckhardt and Aurell 1989); to obtain convergent expressions on
the real axis, it is vital to find an efficient ordering scheme in the summation to ensure
maximal cancellation between terms (Aurich et al 1988, Sieber and Steiner 1990, Cvitanović
and Eckhardt 1989, Berry and Keating 1990, Tanner et al 1991). An ordering is naturally
provided by the so-called transfer operator method (Bogomolny 1992) which will be briefly
introduced here. Transfer operators are a generalization of boundary integral kernels; the latter
find widespread use as a numerical tool to obtain eigenfrequencies in acoustics and elasticity
in finite domains (Bonnet 1995). As usual, we will restrict the discussion to scalar wave
equations; the generalization to elasticity will be treated in section 2.2.

We start from a classical Poincaré map defined on a (2d −2)-dimensional sub-manifold of
the full phase space—the surface of section—by a condition f (r, p) = 0; H(r, p) − ω2 = 0.
The mapping is given by subsequent intersections of a trajectory with the surface of section.
Choosing, e.g. f = rd (which may be achieved after an appropriate coordinate transformation),
one defines in analogy a quantum Poincaré map acting as a discrete-time propagator on
wavefunctions

ψm+1(s) =
∫

dsd−1
0 T (s, s0;ω)ψm(s0)

with s, s0 on the (d−1)-dimensional surface of section. The so-called transfer operator
T (s, s0;ω) is unitary reflecting the phase-space conservation of the classical map. Neither the
classical Poincaré map nor the corresponding quantum transfer operators can in general be
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given analytically. The classical map is usually obtained by solving the equations of motion
numerically. Constructing the corresponding quantum map explicitly is a more elaborate task;
quite general methods are presented in (Doron and Smilansky 1992, Dietz and Smilansky
1993, Prosen 1994, 1995, 1996, Rouvinez and Smilansky 1995). The quantum Poincaré map
contains the whole information about the eigenfrequency spectrum given by the fixed point
condition ψ = T (ω)ψ , that is, eigenfrequencies correspond to the zeros of the function

ζ−1(ω) = det[1 − T (ω)]. (40)

A direct connection between (40) and the semiclassical zeta function (36) can be established
for chaotic systems; by writing T in a semiclassical form, one obtains (Bogomolny 1992,
Doron and Smilansky 1992)

Tsc(s, s0;ω) = 1

(2π i)(n−1)/2

∑
cl.tr

s0→s

√∣∣∣∣det

(
∂2S

∂s∂s0

)∣∣∣∣ exp

(
iS(s, s0;ω) − iµ

π

2

)
, (41)

where the sum is taken over trajectories form s0 to s without crossing the Poincaré surface of
section. For chaotic systems, the trace of the transfer operator T n is linked to the periodic
orbits of length n by stationary phase approximation, i.e.

Tr T n
sc(ω) =

(n)∑
po

exp
(
iSpo(ω) − iσpo

π
2

)
√|det(Mpo − 1)| . (42)

Using the relation

det(1 − T ) = exp[Tr log(1 − T )] = exp

(
−

∞∑
n=1

1

n
Tr T n

)
= ζ−1, (43)

one regains the semiclassical zeta function, (36). Provided the operator T has the so called
trace class property (which essentially means, that the Tr T exists and is finite), one can show
(Reed and Simon 1972a, 1972b) that the determinant (40) converges when expanded in terms
of cumulants, that is,

ζ−1(ω) = det[1 − T (ω)] =
∞∑

n=0

cn(ω), (44)

where the cn are obtained recursively

cn = −1

n

n−1∑
m=0

Tr T n−mcm, c0 = 1. (45)

Writing out the first few terms in the expansion, one obtains

ζ−1(ω) = 1 − Tr T − 1

2
(Tr T 2 − (Tr T )2) − 1

3

(
Tr T 3 − 3

2
Tr T 2 Tr T +

1

2
(Tr T )3

)
− · · · .

(46)

The convergence of the cumulant expansion (44) originates from cancellations between the
terms in brackets. Thus, an exponentially increasing number of periodic orbits contained in
Tr T n is balanced in a delicate way by products of shorter orbits leading to a rapid decay in the
cn’s for large n. The so-called cycle expansion technique makes use of these cancellations on
the level of individual periodic orbits, see Cvitanović (1988), Artuso et al (1990), Cvitanović
et al (2006) and references therein. Periodic orbit quantization using cycle expansion
techniques has been applied to chaotic systems ranging from the stadium billiard to the
three-body Coulomb problem helium, see for example Cvitanović and Eckhardt (1989), Ezra
et al (1991), Tanner et al (1991), Wirzba (1992), Tanner and Wintgen (1995) and Tanner et al
(1996, 2000).
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2.2. Trace formulae in elastodynamics

The general theory sketched in the last section can directly be applied to problems in linear
acoustics. The two-dimensional Helmholtz equation with constant wave velocity has been
studied in detail in the context of ‘quantum billiards’ and has been realized experimentally
in flat microwave cavities. The underlying classical dynamics is here only influenced by the
shape of the boundary and model systems with desired properties can easily be constructed; a
detailed account of studies on quantum billiard is, for example, given by Stöckmann (1999)
and Kuhl et al (2005). For an experimental demonstration of wave chaos effects in water-filled
cavities, see Chinnery and Humphrey (1996).

In the following, we will review progress in adapting the methods introduced in section 2.1
to the more complex wave equations found in elastodynamics. The presence of longitudinal
and transversal waves with different velocities leads to ray splitting and thus a non-
deterministic ray dynamics. Ray splitting is in fact a general phenomenon of wave propagation
occurring, for example, in optics at interfaces with a sudden change in the refractive index or
in quantum mechanics at step-potential barriers. Its presence leads to interesting new effects
when studying the relation between linear wave equations and an underlying ray dynamics.
We will consider some simple geometries for elastic bodies in section 2.2.3 and ray splitting
billiards in section 2.3 in more detail. We start by giving the known results for the mean
density of states for plate and bulk spectra.

2.2.1. Mean density of eigenfrequencies and the Weyl expansion. The average density of
eigenfrequencies of bodies of finite size can be given in terms of a series expansion in the
wave number also referred to as Weyl expansion (Baltes and Hilf 1976, Safarov and Vasil’ev
1992). The mean density enters as a leading, non-oscillatory term in the trace formula (34) or
in integrated form in the spectral determinant, equation (36). Weyl’s original motivation for
studying the mean density was to estimate thermodynamic quantities such as the heat capacity
for elastic bodies (Weyl 1911); it furthermore plays an important role in energy transport
problems such as SEA, see section 3.3. Systematic methods for obtaining the Weyl expansion
beyond the leading order, equation (35), have been given for the Schrödinger equation by
Grammaticos and Voros (1979) and for the Helmholtz equation with smooth boundaries by
Stewartson and Waechter (1971) and Berry and Howls (1994). The latter demonstrate that
the resulting series is asymptotic and that its divergence is controlled by ‘short’ periodic
orbits. The theory can also be applied to the biharmonic equation, which acts in many
ways as a Helmholtz equation with special (mixed) boundary conditions (Legrand et al 1992,
Bogomolny and Hugues 1998). In isotropic elastodynamics, however, only the first two terms
of the Weyl series are known at present and for shells and anisotropic media only the leading
term has been derived explicitly, see sections 4.2 and 4.3.

The smooth part of the spectral staircase function (37) for wave equations in two
dimensions and homogeneous and isotropic media is of the general form (Baltes and Hilf
1976, Safarov and Vasil’ev 1992, Bogomolny and Hugues 1998)

N(k) = α
A

4π
k2 + β

L

4π
k + c0,

where A and L denote the area and perimeter length of the domain, respectively, and α, β

depend on the wave equation and the boundary conditions. For scalar wave equations and
smooth boundaries, the constant terms is given in terms of the curvature R of the boundary

c0 = γ

∫
dl

R(l)
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and γ depends on the boundary conditions. Extra contributions arise at sharp corners
(Bogomolny and Hugues 1998). For the Helmholtz equation, one obtains α = 1, β = ±1
for Neumann and Dirichlet boundary conditions, respectively, and γ = 1/12π . A general
method for calculating the boundary term β is, for example, given in (Prange et al 1996).

The first few terms of the Weyl expansion for bending modes in plates were derived by
Vasil’ev (1987), see also Safarov and Vasil’ev (1992). Common to both of these mathematical
derivations is the use of Krein’s formula (38). Bogomolny and Hugues (1998) offer a derivation
in the spirit of Balian and Bloch (1970) for quantum billiards. Boundary corrections are
determined by considering the free Green function as well as the half-plane Green function
with appropriate boundary conditions. One obtains for clamped edges

β = −1 − �(3/4)√
π�(5/4)

(47)

and for free edges

β = −1 + 4(σ (2 − 3σ ′) + 2σ ′√2σ ′2 − 2σ ′ + 1)−1/4 (48)

− 4

π

∫ 1

0
dt arctan

[√
1 − t2

1 + t2

(
1 + σ ′t2

1 − σ ′t2

)2
]

, (49)

with modified Poisson ratio σ ′ = 1 − σ and k is the flexural wave number as given in (13).
The constant term c0 is also discussed by Bogomolny and Hugues (1998).

We finally turn to the Navier–Cauchy equation in two spatial dimensions describing plane
strain in bulk elasticity or in-plane modes in plates. The leading term is now given by the
‘phase-space’ volume of shear and pressure modes separately and one obtains the expansion
(Vasil’ev 1987, Safarov and Vasil’ev 1992)

N(ks) = (1 + κ−2)A

4π
k2
s +

βL

4π
ks + o(ks), (50)

with

β = −1 − 1

κ
− 4

π

∫ 1

1/κ

dξ arctan
√

(1 − (κξ)−2)(ξ−2 − 1) (51)

for a clamped boundary and

β = 4/γ − 3 +
1

κ
+

4

π

∫ 1

1/κ

dξ arctan
(2 − ξ−2)2√

(1 − (κξ)−2)(ξ−2 − 1)
(52)

for free boundaries. Here, κ = cp/cs where the pressure wave speed is given by equations (19)
for bulk waves and (20) for plates. The term containing γ in (52) originates from Rayleigh
surface wave contributions; see section 4 with γ ∈ (0, 1) given by the equation

γ 6 − 8γ 4 + 8(3 − 2κ−2)γ 2 − 16(1 − κ−2) = 0, (53)

the so-called Rayleigh equation (Ewing et al 1957, Landau and Lifshitz 1959). It determines
the wave number of surface Rayleigh waves as kR = γ ks .

The explicit form of β has first been discussed by Lotfi (1995); an improved version has
been published by Bertelsen et al (2000). The boundary corrections in three dimensions have
been derived by Dupuis et al (1960), see also Prange et al (1996). Weaver (1989a) obtained
experimentally a large set of eigenfrequencies for aluminium blocks and tested Weyl’s law for
the elastic wave equation. Later experiments by Schaadt et al (2003a) provided an accurate
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Figure 2. Experimental staircase function measured for a rectangular fused-quartz block by
(Schaadt et al 2003a). Inlet shows fluctuations around the mean.

confirmation of (50) using up to 2500 eigenfrequencies of a three-dimensional quartz block,
see figure 2.

For anisotropic, homogeneous media, only the leading term of the Weyl expansion is
known and has been worked out explicitly by Søndergaard et al (2004). It can again be
interpreted in terms of the available phase-space volume albeit with an anisotropic set of
momentum surfaces; see 4.3 for more details.

In an interesting experiment by Lobkis and Weaver (2001a), the spectral density of
aluminium foam was determined. Somewhat surprisingly, it was found that the mean density
is independent of the frequency; this indicates that the metal foam in the wavelength regimes
considered behaves very much like a ‘quasi’ one-dimensional system similar to quantum
graphs or lattice models studied by Kottos and Smilansky (1997, 1999).

2.2.2. Trace formulae for bending modes in plates. By factorizing the biharmonic equation
in the form (13), one recovers the Helmholtz equation as the wave part of the PDE. The
other factor, (� − k2), gives rise to exponentially decaying modes; they contribute only in
a strip of size 1/k near the boundary. A semiclassical description of the wave dynamics
in the interior of the plate is thus identical for both plates and membranes. Especially, rays
contributing to the approximate Green function (28) or trace formulae such as (34) are governed
by Hamiltonian equation of motion of the from (4). The decaying modes act effectively as
a modified boundary condition. Semiclassically, this enters in the form of extra phases at
ray-impact with the boundary.

Legrand et al (1992) were the first to consider wave chaos in the context of plates by
studying numerically the solutions of the biharmonic equation in a stadium-shaped domain
with clamped boundary conditions. Good agreement could be achieved comparing their results
with solutions of the Helmholtz equation with a special type of mixed boundary conditions. By
investigating the wavefunctions, signs of scarring, that is, enhanced intensities along periodic
orbits have been found; for references on scarring see McDonald and Kaufman (1979, 1988)
and Heller (1984) and the more recent review by Kaplan (1999). Scarring effects have also
been seen experimentally by Teitsworth (2000). A semiclassical theory for the biharmonic
equation was finally worked out by Bogomolny and Hugues (1998). By employing single-
layer potential theory on the boundary both for the propagating and decaying modes and
working out the large k asymptotics, a transfer operator kernel of the form (41) has been
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derived. Those components of T describing transitions from propagating to decaying modes
at the boundary vanish in the semiclassical limit and one obtains in leading order

Tb(s, s0; k) = eiφ(θ,k)Th(s, s0; k), with s, s0 on the boundary

and where Th refers to the semiclassical expression (41) for the Helmholtz equation with
Neumann boundary conditions and θ is the angle with respect to the normal at the boundary
point s0. The phase φ coincides with the phase shift obtained by solving the infinite half-plane
problem and is given as (Vasil’ev 1987, Safarov and Vasil’ev 1992)

φ = −2 arctan

[
cos θ√

1 + sin2 θ

]
clamped;

φ = −2 arctan

[
cos θ√

1 + sin2 θ

(
1 + σ ′ sin2 θ

1 − σ ′ sin2 θ

)2
]

free

(54)

with σ ′ = 1 − σ .
Periodic orbit trace formulae of the form (42) have been derived by Bogomolny and

Hugues (1998); the periodic orbit contributions contain extra phases here due to the phase
jumps, equation (54), at impact with the boundary. Spectra for a disk and a stadium-shaped
plate have been obtained numerically. By comparing the Fourier transform of the trace
with periodic orbit contributions, excellent agreement with the semiclassical expressions was
obtained. Note that for the integrable disc geometry, a modified trace formula applies and
periodic orbit families contribute with weights proportional to

√
k , see Bogomolny and

Hugues (1998) for details.
Experimental verification for periodic orbit contributions in plate spectra has been obtained

by Neicu et al (2001) and Neicu and Kudrolli (2002) using a clover-shaped fused-quartz
plate. The validity of semiclassical trace formulae is not immediately evident given that the
biharmonic equation is itself an approximation of the true plate dynamics. Unambiguous result
could only be obtained by Neicu and Kudrolli (2002) after including higher order corrections
to the dispersion relation as given by Bertelsen et al (2000) and carefully tracing individual
peaks in the Fourier transformed spectrum by making small changes to the shape of the plate.
An overall scaling factor in the frequency remained unaccounted for.

An interesting application of wave chaos effects to the radiation patterns of plates and
membranes has been suggested by Delande and Sornette (1997). It is pointed out that acoustic
radiation is linked via Rayleigh’s formula to the Fourier transformed eigenmodes of the plate,
that is, the wavefunction in momentum representation. In particular, it is demonstrated that
a high degree of directionality of the sound emission is achieved along scars in momentum
space, see figure 3. Such scaring effects have been studied also by Bäcker and Schubert
(1999). Directionality due to dynamical ray effects have found widespread interest in the
optics community in the context of micro-lasers (Nöckel and Stone 1997).

2.2.3. Bulk elasticity—wave dynamics and mode mixing. The ray dynamics associated
with waves in isotropic elastic media is fundamentally different from the type of classically
deterministic dynamics considered so far. While the elastic potentials still obey Helmholtz
equations, the two modes have different wave speeds leading to ray splitting at the boundary
with conversion coefficients depending on the boundary conditions, see section 1.2.3. (We
will not distinguish between bulk elasticity and in-plane modes in plates in what follows.)
Thus, a new feature enters, not normally considered in dynamical systems theory: trajectories
can convert from one mode type to another on impact with the boundary which leads to a
change of the momentum component normal to the boundary. The conversion rates are given
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(a) (b)

Figure 3. (a) Scar in the stadium billiard at k = 12.918 and (b) the corresponding radiation
diagram (essentially the square of the Fourier transform of the wavefunction). The latter shows
large directivity in the direction of periodic orbits (Delande and Sornette 1997).

by the modulus square of the coefficients (23), thus adding a probabilistic component to the
dynamics. This has interesting consequences for semiclassical expressions as well as the
notation of ‘chaos’ of the underlying ray dynamics.

Periodic orbit formulae. While the evolution of wave impulses along elastic rays has been
studied in detail in a wave-scattering context such as seismology, Couchman et al (1991, 1992)
were the first to consider seriously the influence of mode mixing on the ray dynamics in a
closed elastic cavity. The authors showed in classical trajectory simulations that ray splitting
leads to an enhancement of chaos in so-called Benettin–Strelcyn ovals (Benettin and Strelcyn
1978), a class of billiards, whose boundaries interpolate between a circle and a stadium billiard.
By comparing phase-space plots with and without mode conversion, it is demonstrated that ray
splitting tends to destroy invariant tori and stable islands and to increase the ergodic component
of the dynamics. Exceptions are phase-space regions where ray splitting is suppressed such
as for s-rays hitting the boundary at angles θ > θcr with θcr = arcsin(1/κ), the critical angle
for s → p conversion. Likewise, two-bounce orbits with normal impact at the boundary at
both ends have αps = αsp = 0, and thus do not mode convert, see (23).

Couchman et al (1991, 1992) also give a trace formula for elastic media in analogy to
Gutzwiller’s original work for quantum systems as presented in section 2.1. The resulting
formula for completely chaotic resonators (here given in the notation used throughout the
paper) is

dosc(ω) = 1

π

∑
po

∞∑
r=1

Tpo|αpo|r∣∣Det
(
Mr

po

) − 1)|1/2
cos

[
r
(
ωTpo + �po − µpo

π

2

)]
. (55)

The sum is over all periodic orbits (including rays undergoing mode conversion) which
are assumed to be isolated and unstable here. The index r denotes repetitions and Tpo

is the accumulated time over the various shear (s) or pressure (p) segments when traversing
the orbit. The amplitude consists of a geometric and a ray splitting contribution. Denoting
the segments along an n-bounce orbit as {v1, . . . vn} with vi = p or s, mode conversion enters
through αpo = ∏n

i=1 αvivi+1 with mode conversion factors given in (23). The Monodromy
matrix Mpo is calculated as the accumulated product of stability matrices including extra
contributions whenever refraction takes place. Note that the dynamics including ray splitting
is still symplectic—Safarov and Vasil’ev (1992) refer to it as ‘a branching Hamiltonian flow’.
The phase µpo is the Maslov index keeping track of passages through caustics (Gutzwiller
1990) and �po = arg(αpo).

The short wavelength asymptotics of a boundary integral kernel has been postulated by
Søndergaard and Tanner (2002) and explicitly derived from the governing equations (16) by
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Figure 4. Example of a periodic orbit undergoing ray splitting (in a disc with cp/cs = 3.61); solid
line (red): s-wave, dashed line (blue): p-wave. The orbit shown here has eight bounces and winds
around three times.

Tanner and Søndergaard (2007) employing methods similar to those used in (Bogomolny and
Hugues 1998). The resulting transfer operator is now a matrix kernel, but otherwise similar
to the scalar case (41). In two dimensions, it takes on the form

T (s, s0) = 1√
2π i

√∣∣∣∣ ∂2L

∂s∂s0

∣∣∣∣α(s, s0) ·
(√

kp eikpL 0
0

√
ks eiksL

)
, (56)

where L(s, s0) is the length of a ray segment from boundary points s0 → s and α is the 2 × 2
matrix of reflection coefficients (23) for free boundary conditions. The trace formula (55) can
then be derived by stationary phase approximation.

A serious discussion on the interplay between eigensolutions of the Navier–Cauchy
equation in finite elastic bodies and the underlying classical ray dynamics including ray
splitting is still in its infancy. Two geometries considered in more detail are circular boundaries
in two dimensions and rectangular bodies in two or three dimensions.

Circular geometries. For a circular disc, the wave equation is still separable in cylindrical
coordinates (Søndergaard and Tanner 2002); from a ray dynamics point of view, this means
that the angular momentum is a conserved quantity also under mode conversion. The dynamics
is thus integrable in each component; transitions between a shear and pressure torus having
the same angular momentum occur at impact with the boundary at a rate given by the square
of the coefficients (23). The dynamics is equivalent to that of a simple two-leg quantum graph
(Kottos and Smilansky 1997, 1999) with classical limit given in terms of a purely probabilistic
two level Markov chain.

A trace formula for the elastic disc has been derived by Søndergaard and Tanner (2002)
starting from the scattering matrix and using the so-called inside–outside duality (Smilansky
1994), that is, the scattering matrix S(ω) describing wave scattering from the exterior has a
unit eigenvalue at an eigenfrequency ω of the interior problem. The oscillatory part of the
density of states for this integrable problem reads

dosc(ω) =
√

aω

π

∑
po

Tpo√
npcp

cos θ
po
p

+ nscs

cos θ
po
s
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r=1

αr
po

r3/2
cos[r(ωTpo − npoπ/2) + π/4], (57)

where n denotes the number of bounces of a periodic ray which contains np segments of
pressure polarized rays and ns segments of shear polarized rays with n = np + ns and Tpo is
the period of a periodic ray. For an example of such an orbit see figure 4. The fluctuations are
enhanced by a factor of

√
ω here, compared to semiclassical periodic orbit contributions for
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Figure 5. Fourier transform of spectral fluctuations in an elastic disc (Søndergaard and Tanner
2002). Thin/thick lines: longitudinal/transverse polarization. Peaks corresponding to ray-splitting
orbits can be identified.

fully chaotic systems, (55); this is in accordance with the trace formula given by Berry and
Tabor (1976, 1977a) for quantum systems with integrable classical limit. The total amplitude
in (57) can again be decomposed into a geometric factor depending on the angles of incidence
θp, θs and a mode conversion factor αpo similar to (55). The Fourier transformed density
of states is depicted in figure 5 showing pronounced peaks at periodic rays including those
undergoing mode conversion.

The N-disc scattering problem discussed in detail by Wirzba (1999) for the Helmholtz
equation has been adapted for elasticity by Søndergaard (2001) and Wirzba et al (2005). In
this context, the wave dynamics is that of an infinite plate with N circular holes governed by
the vectorial PDE (16). The determinant of the scattering matrix for the full system can be
given in a form similar to (39); the poles of the S matrix are expressed in terms of the zeros
of a zeta function given here as the determinant of an inter-disc scattering matrix. It can
be written in semiclassical approximation as a product over periodic orbits of the scattering
problem. Søndergaard (2001) and Wirzba et al (2005) studied the two-disc problem in more
detail, both numerically and semiclassically. In this system, there is only one geometric
periodic orbit supporting both polarizations. In addition, there are diffractive or creeping
waves, also called Franz resonances, (Franz 1954, Keller and Karal 1964) which also exist
in the Helmholtz case (Vattay et al 1994) giving rise to an exponentially decaying surface
contribution. More importantly, weakly attenuated Rayleigh surface waves enter in the case
of free boundary conditions giving rise to additional periodic orbit contributions consisting of
segments of geometric and Rayleigh rays. The interplay between shear, pressure and Rayleigh
contributions leads to a rather complicated resonance pattern for this simple problem (Wirzba
et al 2005), especially when compared to the two-disc Helmholtz spectrum (Wirzba 1999).
Further details on diffractive orbits are given in section 4.

Rectangular geometries. The coupling between shear and pressure modes lifts the translational
symmetry in rectangular plates and blocks, and the wave equation (16) is no longer separable
in Cartesian coordinates. Still, the periodic orbits of the ray dynamics are not geometrically
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hyperbolic, that is, nearby trajectories of the same mode type separate at most algebraically.
Rectangular bodies thus represent an interesting intermediate geometry where all the wave
chaos (if it exists) must originate from mode conversion effects. Bohigas et al (1991) pointed
out that finding RMT statistics in Weaver’s early experiment (Weaver 1989a) is surprising in
that sense; Weaver used aluminium blocks with slits cut into them for which the geometric
ray-dynamics is at most pseudo-integrable (Richens and Berry 1981) and deviations from
GOE5 are to be expected (Bogomolny et al 1999, Bogomolny and Schmitt 2004). A more
careful reanalysis of Weaver’s original data (Delande et al 1994) showed good agreement
with GOE as well as periodic orbit contributions on large spectral scales in agreement
with semiclassical theories. This finding has furthermore been confirmed by more recent
experiments on rectangular, fused-quartz plates (Schaadt et al 2001) and blocks (Schaadt et al
2003a); due to the enhanced number of resolved eigenfrequencies in the experiment, it could
be verified that the spectral statistics coincides with a superposition of several independent
GOE spectra (due to the discrete symmetries of the objects) and not a Poisson distribution as
suggested in an earlier experiment by Ellegaard et al (1995). This is a clear indication of wave
chaos behaviour. The result was surprising as the ray dynamics (including ray splitting) in
rectangular geometries is not ergodic, that is, for all κ > 1 only a finite number of directions
are explored by a given trajectory (Biswas 1996, Schaadt et al 2001, 2003a). Such a behaviour
is typical for pseudo-integrable systems (Richens and Berry 1981). However, it has also been
shown numerically, that the number of periodic rays increases exponentially (Biswas 1996), a
phenomenon known only from classically chaotic systems.

The intermediate character of rectangular bodies is also revealed in the nodal line patterns
measured by Schaadt et al (2001), Ellegaard et al (2001) and Schaadt et al (2003a) for in-
plane modes of rectangular plates. A large number of wavefunctions show ergodic nodal
line patterns such as the wave pattern at 556.5 kHz, 592.1 kHz, 599.0 kHz or 645.9 kHz in
figure 6; they appear very similar to wavefunctions in fully chaotic geometries such as for
quantum billiards with Sinai or stadium-shaped boundaries or flexural eigenmodes in stadium-
shaped plates such as shown in figure 16 (Ellegaard et al 2001, Schaadt et al 2003b). Besides,
one finds regular patterns in figure 6 similar to the chequer-board patterns observed for flexural
modes in rectangular plates such as shown in figure 17. Note, that the biharmonic equation (8)
is separable for rectangular geometries having clamped boundaries, but that when all edges
are free, the solution cannot be given in closed form but only as an infinite series expansion
(Gorman 1978, 1982). Wavefunctions of the type shown in the first and the last row in figure 6
are reminiscent of so-called bouncing ball (bb) modes observed for, for example, the stadium
Helmholtz billiard (Sieber et al 1993). The first row in figure 6 has indeed been identified
mainly as shear type bb-mode whereas the last two rows have characteristics typical for pure
pressure waves.

It is, however, not clear whether the ratio of regular to irregular modes vanishes
asymptotically in elastic rectangles as it does in the stadium (Tanner 1997). This question is
closely related to an extension of Shnirelman’s theorem (Shnirelman 1974) to elastic wave
equations (Weaver 1982, Akolzin and Weaver 2004). The precise nature of the wave chaos
aspects found in rectangular elastic bodies is still an open question.

2.3. Ray-splitting billiards

Inspired by the theoretical study on ray propagation in elastic media by Couchman et al
(1991, 1992), Prange et al (1996) and Blümel et al (1996a, 1996b) started to consider

5 GOE statistics applies to eigenvalues of random, symmetric matrices reflecting the underlying time-reversal
symmetry; for more details, see section 3.1.
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Figure 6. In plane modes for a rectangular plate of fused quartz; (the notation df/f refers to
a frequency shift with respect to variations in temperature being different for longitudinal and
transversal waves) (Schaadt et al 2001).

dynamical systems with ray splitting associated with scalar wave equations. Ray splitting
occurs generally at interfaces at which the wave velocity c(r) changes discontinuously (that
is, fast on the scale of the wavelength considered). Possible realizations are quantum billiards
with step potentials, see figure 7, or thin microwave cavities with abrupt changes in height or
in the index of refraction. Thus, ray splitting does not require the underlying wave equation
to be of vectorial nature.

The next-to-leading order terms in the Weyl expansion for ray splitting billiards have
been derived by Prange et al (1996) and Kohler and Blümel (1998b) and experimentally
verified by Vaa et al (2003). A systematic way to calculate higher order terms similar to the
approach by Berry and Howls (1994) for the Helmholtz equation was discussed by Décanini
and Folacci (2003). Blümel et al (1996a, 1996b) showed that ray splitting typically enhances
the degree of chaos in the system; in their example, a circle billiard with a change in wave
speed along the diameter was considered. The classical phase space is mostly chaotic which
is reflected in the spectral statistics being close to GOE, see also Oertner et al (1996). A
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Figure 7. The 68th wavefunction in a disc billiard with potential step exhibiting ray splitting
(Blümel et al 1996a, 1996b).

modified transfer operator of the form (41) including ray splitting amplitudes was derived by
Blümel et al (1996a, 1996b) and generalized trace formulae were deduced and applied to the
circular billiard. Diffractive contributions along the wave-splitting boundary (lateral orbits)
were considered and discussed in more detail by Kohler and Blümel (1998a). A numerical
test of the semiclassical formulae has been performed in (Kohler and Blümel 1999). An
experimental realization of a ray splitting billiard was first presented by Sirko et al (1997)
and Bauch et al (1998); the eigenfrequencies of thin microwave cavities of stadium and
rectangular shape were measured using dielectric (Teflon) and metal bars as ray-splitting
interfaces. Periodic orbits introduced through ray splitting could be identified in the Fourier
transformed spectrum. In a similar experiment, Schäfer et al (2001) measured both the
eigenfrequencies and wavefunctions in a rectangular cavity with a circular Teflon scatterer—a
ray-splitting Sinai billiard. Scars along ray-splitting orbits have been observed, see figure 8.

Kohler et al (1997) considered the influence of a ray splitting barrier on the dynamics of
a class of triangular billiards. They demonstrated that the dynamics, which is integrable or
pseudo-integrable without ray splitting, becomes completely chaotic. This provided for the
first time an example of strong chaos induced by ray splitting alone. Similar observations
were made for rectangular elastic bodies, see section 2.2.3. The equivalence between
one-dimensional ray-splitting billiards and two-state quantum graphs were pointed out by
Dabaghian et al (2001); this is in analogy to the connection between in-plane modes of
circular elastic plates and quantum graphs as discussed by Søndergaard and Tanner (2002),
see section 2.2.3.

2.4. Time-reversal imaging

Time-reversal invariance together with the linearity of the wave equations gives rise to
remarkable effects of which weak localization, discussed in more detail in section 3.1.5,
and time-reversal imaging (TRI) are the most prominent once. We will briefly summarize
the ideas behind TR techniques here and highlight some of the main results; for a more
comprehensive overview, see the review papers by Fink (1997) and Fink et al (2000).

In a time-reversal experiment, a medium is typically excited by a short pulse at a source
point r0 at time t = 0 and the resulting wave field is measured at one or several receiver points
r, see figure 9. It is important that the time dependence of the signal is fully resolved, that
is, that both the intensity and the phase is recorded. For acoustic signals with frequencies in
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Figure 8. Wavefunction in a Sinai-type microwave billiard with circular Teflon scatterer. Teflon
acts as a potential step producing ray splitting; scarring and transmission into the Teflon disc can
be observed (Schäfer et al 2001).

Figure 9. Typical setup for a time-reversal experiment; in a first step the source (A) transmits a
short pulse that propagates through the rods. The scattered waves are recorded on a 128-element
array (B). In the second step, the 128 elements retransmit the time-reversed signals through the
rods. The piezoelectric element (A) is now used as a detector and can be translated along the x
direction (Fink et al 2000).

the MHz range, standard transducers can achieve this easily; the same is non-trivial for, for
example, optical signals. (A technique similar to TRI used in optics is phase conjugation,
where a time-reversal effect is achieved by reversing the sign of the phase; for similarities
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and differences of both techniques, see the discussion by Fink et al (2000) and Derode et al
(2001).) A stretch of the signal in a time interval [t0, t1] is then time reversed electronically
and fed back into the system, typically at the receiver point. Starting the time measurement
at −t1, the resulting wave field combines and forms a localized peak of high intensity at the
source point at t = 0.

Interpreting the effect in a ray picture, wave energy is transported along classical rays
from r0 → r and the signal at the receiver position r is a coherent superposition of waves
having the same arrival time. The time-reversed signal thus produces wave fronts which travel
back along the ray paths from r → r0 and interfere constructively at the source point r0 at time
t = 0. In an ideal TR experiment, the signal is recorded over a closed surface surrounding the
source thus retaining the full information of the wave field. But even if only parts of the wave
field are recorded by for example, an array of receivers—a time-reversal mirror (TRM)—
there is always a coherent part of the time-reversed field which will refocus at the source point.
In addition, there is now a reproducible background field due to wave fronts launched at angles
not reversing the original ray path from source to receiver.

Derode et al (1995, 1998) demonstrated experimentally the robustness of the effect in the
presence of multiple scattering by sending an acoustic underwater pulse through a layer of 2000
randomly distributed steel rods. After recording the diffusive signal by a TRM and resending
the time-reversed signal through the layer, a TR peak could be produced. Chaotic scattering
leads to an effective enhancement of the aperture of the device due to ray paths reaching the
source/receiver which would have been lost without the scatterers. The resolution of the
peak is significantly better compared to TRI without scattering medium and is independent
of the length of the time window t1 − t0 as long as the window is taken in the diffusive
regime produced by multiple scattering events. When choosing a periodic array of scatterers,
however, hyper-focusing is not observed (Tourin et al 2006) and the spatial resolution of the
TR peak is the same as that without a scattering medium, limited by the size of the TRM alone.
Chaos thus enhances the resolution of the signal!

It came as a surprise that wave dynamics is so stable under a time-reversal operation in a
chaotic scattering environment whereas the corresponding ray dynamics is unstable and thus
sensitive to small perturbations. Snieder and Scales (1998) point out that interference acts as
a filter singling out the ‘good’ rays while other paths give rise to an incoherent background
signal only. They show furthermore that the system is indeed exponentially unstable, but with
respect to changing the positions of the scatterers before applying the time-reversed signal.
The authors consider in fact the fidelity of the wave system (without mentioning this); their
findings are in agreement with the theory outlined in section 2.5 such as the arguments given
by Cerruti and Tomsovic (2002) based on Lagrangian manifold techniques and also discussed
in the context of underwater acoustics in section 2.6. The overall properties of TRM have been
studied in detail in (Derode et al 2001). It is shown experimentally, that the hyper-focusing
property of the TR peak saturates and that side lobes appear when increasing the width of the
scattering layer. It is suggested that the additional side peaks are caused by correlations in the
arrival time distributions for paths from r0 → r due to, for example, crossing of scattering
paths. Such correlations have been shown to be of importance in a semiclassical description
of the universality of spectral statistics (Sieber and Richter 2001, Sieber 2002, Berkolaiko
et al 2002, 2003, Heusler et al 2004, Müller et al 2004, 2005, 2007), see section 3.1. Applying
a TR process is indeed equivalent to measuring the auto-correlation functions of the Green
function, that is, the signal s(t) at the source point r0 after applying the TR signal is

s(t) =
∑

i

∫ −t0

−t1

dτ Ĝ(r0, ri , τ )Ĝ(r0, ri , t + τ), (58)
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Figure 10. Numerical simulation of a one-channel time-reversal experiment; from (Draeger and
Fink 1997): (a)–(e) injection of a short pulse in A and recording in B; (f )–(l) emission of the
time-reversed signal in B and refocusing in A. Reprinted with permission from the American
Physical Society.

where Ĝ denotes the time-dependent Green function defined in (25) and the summation is
taken over the receiver positions i; furthermore, the symmetry Ĝ(r0, r, t) = Ĝ(r, r0, t) is
used. It is shown that the number of transducers does not affect the spatial resolution, but
enhances the signal-to-noise ratio up to a saturation level. TRI is closely related to another
wave effect, namely recovering the Green function from cross-correlation signals as discussed
in section 3.1.4; this link has been worked out in detail in (Derode et al 2003a, 2003b).

Draeger and Fink (1997) demonstrate that TRI works also in a chaotic cavity using a
single transducer. Here, the wave field in a mono-crystalline silicon wafer is excited at
a source point by a short pulse and is measured at a single point on the boundary; see
figure 10 for a numerical simulation. The time-reversed and re-emitted signal focuses at the
source point with a signal-to-noise ratio proportional to the time window �T = t1 − t0. Chaos
in the underlying ray dynamics is essential as it leads to a fast equidistribution of the wave



Topical Review R471

field making single channel TRI possible—the technique does indeed not work for rectangular
cavities. The theory behind TRI in closed domains has been developed by Draeger and Fink
(1999). For chaotic cavities, the so-called cavity equation holds

s(t) =
∫ −t0

−t1

dτ Ĝ(r0, r, τ )Ĝ(r0, r, t + τ) (59)

=
∫ −t0

−t1

dτ Ĝ(r0, r0, τ )Ĝ(r, r, t + τ), (60)

that is, the signal Ĝ(r0, r0, t) emanating from and refocusing at the source r0 is convoluted
by the signal at the receiver position r. Side lobes, observed also in cavity TRI, can be related
to correlations between the travel times entering Ĝ(r0, r0, t) and Ĝ(r, r, t) which are of the
order of the mean travel time between two reflections on the boundary. Information loss thus
happens entirely at the receiver point due to undirected remission. In an experimental study
carried out by Draeger et al (1999), the refocused wave field of the bending modes of a silicon
plate is measured using laser interferometry. The influence of the time window �T on the
peak to side lobes as well as peak to noise levels is studied confirming a saturation regime
for the former and linear increase for the latter. Similar results are obtained in time-reversal
experiments in elastic solids by Sutin et al (2004) using doped glass and Berea sandstone.
Neither strong mode conversion leading from a pressure dominated early signal to a shear
wave dominated coda, nor the large difference in the attenuation properties of the two material
influences the time-reversal properties significantly confirming theoretical considerations by
Draeger et al (1997).

In a conventional TRI experiment, the time-reversal symmetry is actually broken as the
energy inserted at time t = 0 is not taken out of the system after refocusing. This limits the
resolution of the refocused peak to half a wavelength λ as the TR signal still consists of an
incoming and outgoing wave at t = 0. de Rosny and Fink (2002) demonstrate that by applying
a time-reversed pulse at t = 0, the size of the focus can indeed be decreased further; the pulse
interferes destructively with the outgoing wave thus producing a sharp peak with focal spot
size λ/14, see figure 11.

Just retaining the qualitative features of the phase of the time-reversed signal seems
sufficient for TRI: in (Derode et al 1999), the signal was time reversed and only its sign was
kept. This one-bit-digitized signal was then used instead and produced even sharper peaks
with a signal-to-noise ratio lowered by 1.2 dB.

In a recent study by de Rosny et al (2004), it has been pointed out that an enhancement
of the peak signal by a factor of 2 is observed when performing a TR experiment where
source and receiver position coincide; signals travel back along two distinct paths from r → r,
namely the original ray and its time-reversed partner. This effect is reminiscent of coherent
backscattering enhancement as discussed in section 3.1.5. de Rosny et al 2005 show, however,
that there is a subtle, but important difference between these two effects. When performing
an experiment in a rotating cylinder filled with water, coherent backscattering enhancement
vanishes as the rotation frequency is increased from zero. The TR signal vanishes, however,
only for r �= r0, but approaches a constant, but finite value for r = r0. The enhancement
of the TR signal at the source is here due to waves travelling along rays which return to the
source point; these rays exist even when time-reversal invariance is broken making refocusing
possible if r and r0 coincide.

The possibility of the detection of a noise source using TRI is discussed theoretically and
studied experimentally by Ribay et al (2005). The time-dependent field amplitude produced
by a noisy signal localized in space, but not in time, is recorded and time reversed. The TR
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(a) (b)

Figure 11. TRI experiment without (a) respective with (b) an acoustic sink (de Rosny and Fink
2002).

wave field shows an enhanced amplitude at the source point with a focus size λ/2. The signal-
to-noise ratio depends only on the number of transducers used in the TRM. The possibility of
separating two nearby noise sources is discussed. Applying TRI for acoustic communication
has been explored by Heinemann et al (2002) and Derode et al (2003c); Heinemann et al
(2002) use TRI to efficiently communicate a signal to a desired spot within a reverberant
acoustic enclosure. Derode et al (2003c) showed that contrary to intuition, the capacity to
transport information in form of acoustic signals is enhanced in a chaotic scattering medium
compared to a ballistic channel due to the hyper-focusing property of TRI. Likewise TRI has
been demonstrated with radio waves (Strohmer et al 2004, Popovski et al 2007).

2.5. Fidelity studies in elastodynamics

In recent years, studies of the stability of linear wave propagation under changes of the system
parameters (in contrast to changes in the initial conditions) have found renewed interest in
quantum mechanics in the context of quantum computation. A useful measure is here the
fidelity (also referred to as Loschmidt echo) defined as (Peres 1984)

F(t) = |f (t)|2; f (t) = 〈ψ |Ĝ′(−t)Ĝ(t)|ψ〉,
with Ĝ(t), Ĝ′(t) being the Green functions for two slightly different systems and |ψ〉 refers
to the initial wave excitation at time t = 0; we use here Dirac notation, that is,

Ĝ(t)|ψ〉 ≡ ψ(r, t) =
∫

dr0 Ĝ(r, r0; t)ψ(r0, 0).
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Fidelity is obviously relevant for the applicability of TRI giving an estimate for how much the
system can change between recording and re-emitting the signal.

Various time regimes have been identified: a perturbative regime with Gaussian decay
for very short times is followed by an exponential decay with exponent obtained from time-
dependent perturbation theory, the so-called ‘Fermi golden rule’ regime and for larger times
by the classical Lyapunov exponent (Jalabert and Pastawski 2001, Jacquod et al 2001, Cerruti
and Tomsovic 2002, Prosen and Znidaric 2002), see also Prosen et al (2003) for an overview.
These predictions have been verified experimentally in a chaotic microwave cavity by Schäfer
et al (2005). In the experiment, the cross-correlation function of a scattering matrix, that is, the
signal transmitted and received at the input and output antenna with and without changing the
cavity was measured. The correlation function is directly related to the fidelity F(t). The theme
has recently been picked up in seismology and elastodynamics: Snieder et al (2002) considered
the influence of changes in the position of the scatters in a multiple scattering wave system.
By working in the perturbative regime, estimates for the mean displacement of the scatterers
can be inferred from the cross-correlation function; this has direct applications in seismology
for monitoring small scale movements due to for example temperature changes in the earth
crust. In an experiment similar in spirit by Lobkis and Weaver (2003), an aluminium block
was excited by a short pulse and changes in the output signal under changes in temperature
were recorded. The experiment of Lobkis and Weaver (2003) has been reconsidered by Gorin
et al (2006) in the context of fidelity theory. The cross-correlation function used in (Lobkis and
Weaver 2003) was shown to coincide with the fidelity and the distortion coefficient measured
is related to the exponent found in the Fermi golden rule regime. Good agreement with RMT
results were found both for irregularly shaped blocks as well as a rectangular block. The
latter came as a surprise, again underlining the ‘chaotic’ nature of rectangular geometries in
elasticity, see section 2.2.3.

2.6. Wave chaos in underwater acoustics

The influence of wave chaos effects in acoustics has been discussed in some detail in the
context of sound transmission in oceans, see Brown et al (2003), Beron-Vera et al (2003) for
comprehensive overviews. In 1948, Ewing and Worzel (1948) discovered the existence of a
sound channel in mid-latitudes at an ocean depth of about 1 km; this channel guides sound
waves over ranges of several thousands of kilometres. It arises from the depth dependence
of the wave velocity which decreases in the upper ocean layers due to typical changes in
temperature and salinity, but increases again in the deep ocean region where the rising water
pressure becomes the dominant factor. Sound rays bend towards smaller wave velocities, see
equation (5), and rays emanating in forward direction start to oscillate around the sound speed
minimum without touching the strongly attenuating sea bed or the ocean surface (acting as
a random scatterer). For a detailed account of the physics behind wave velocity profiles in
oceans, see Flatté et al (1979) or Kuperman and Jackson (2002). Recent experimental results
on acoustic wave transport over a 3250-km range can be found in (Worcester et al 1999, Colosi
et al (1999)).

By employing so-called parabolic approximations of the wave equation valid for
small angle scattering, the three-dimensional Helmholtz equation describing acoustic wave
propagation in water can be written in form of a one-dimensional time-dependent Schrödinger
equation; here, the range r, that is the distance from source to receiver, takes on the role of
a fictitious ‘time’ and the depth z < 0 below sea-level acts as the other variable, see Tappert
and Brown (1996), Virovlyansky and Zaslavsky (1999) and references therein. (Castor et al
(2004) discuss wave propagation including nonlinear terms in the wave equation). Assuming
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Figure 12. Time front measured at a vertical line array stationed near Hawaii. Peak intensity was
obtained as function of ocean depth and travel time of the signal (Worcester et al 1999, Colosi
et al (1999)).

a range-independent velocity profile, that is, setting c(r) = cM(z), leads to a one-dimensional
Helmholtz equation (1) and the resulting ray dynamics is integrable; a realistic cM profile
has been given by Munk, see Flatté et al (1979). On the other hand, Tappert and co-workers
pointed out (Smith et al 1992) that range-dependent velocity profiles

c(r, z) = cM(z) + δcfl(z, r)

lead to an in general chaotic ray dynamics with possible implications for the stability of an
analysis of acoustic signals in terms of ray or wave travel times (Tappert and Brown 1996,
Virovlyansky and Zaslavsky 1999). The fluctuations δcfl are caused by, for example, water
waves on scales of 102–104 m and mesoscale inhomogeneities such as synoptic eddies on
scales of 104–105 m (Colosi and Brown 1998). The instability in the ray dynamics turned out
to be a less serious problem than anticipated. Finding relevant ray contributions corresponds
to solving a boundary value problem, that is, finding a trajectory travelling from a source point
r0 to a receiver point r in time t; while individual trajectories with the same initial condition
will deviate exponentially under a perturbation of the system, the same is not the case for
solutions to the boundary problem. In fact, Cerruti and Tomsovic (2002) and Brown et al
(2003) point out that the Lagrangian manifold associated with the initial conditions r0 fixed,
p arbitrary, is structurally stable under perturbations. Similar observations have been made by
Mazur and Gilbert (1997) using variational methods based on Fermat’s principle and Collins
and Kuperman (1994) using boundary value techniques. This theme has also been discussed
in the context of time-reversal imaging and fidelity, see sections 2.4 and 2.5. In underwater
acoustics, stability is furthermore added to the classical ray dynamics by intermittency effects
and large scale dynamical structures such as can-tori near stable islands; they dominate in
particular the rays contributing to early arrival times (Brown et al 2003).

In recent years the discussion has centred on a wave description of underwater signals.
While early arrival times in the signal measured by Worcester et al (1999) and Colosi et al
can be assigned to individual ray trajectories, long time signals are dominated by interference
effects strongly affected by range-dependent fluctuations, see figure 12. Smith et al (1992)
coined the term wave chaos in the context of underwater acoustics. The connection to quantum
chaos was established in more detail in the late 1990s. Virovlyansky and Zaslavsky (1999)
and Virovlyansky (2000) related the wave propagation to a ray dynamics by expanding the
wave front in terms of modes (or eigenfunctions) of the unperturbed problem using classical
perturbation theory and action-angle variables in the z coordinate. The onset of chaos in terms
of Chirikov’s criterion, see Chirikov (1979), was also discussed. Wave packet dynamics was
studied in terms of Husimi-distributions by Sunaram and Zaslavsky (1999) and Smirnov et al
(2005). (The Husimi distribution is a phase-space representation of a wavefunction frequently
employed in the quantum chaos, see for example Takahashi and Saito (1985), Lee (1995)).
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Mirroring the debate in quantum chaos (Sepúlveda et al 1992, Tomsovic and Heller
1993), the time horizon for a break-down of semiclassical approximations has been discussed;
it has been suggested that the log time, that is, the time at which semiclassical expressions
develop singularities due to caustics in chaotic systems, is not a limiting time scale. Wolfson
and Tomsovic (2001) pointed out that interference can be well described by semiclassical
expressions containing sums over classical paths. It is noted, however, that the number of
contributing trajectories increases exponentially with time in chaotic systems and semiclassical
approximation become impractical for long time scales (Virovlyansky 2000), see section 2.1.
Mixed phase-space structures typical for ocean environments (Smirnov et al 2001) lead to
an enhancement of stability of wave mechanical propagation. These effects explain naturally
the stability of the wave patterns for early arrival times as well as the log-normal distribution
seen in the late arrivals measured by Worcester et al (1999) and Colosi et al (1999), see also
Brown et al (2003) and Beron-Vera et al (2003). Recently, Hegewisch et al (2005) pointed
out that the fluctuations δcfl in the wave-speed profile need to be taken only up to scales of
the order of the (mean) wavelength; including higher order terms leads to enhanced ray chaos
which in turn results in a higher density of caustics; these semiclassical singularities need to be
smoothed out by for example uniform approximations thus leading to an effectively smoothed
wave-speed potential.

In separate developments, aspects of time-reversal imaging, phase conjugation and
cross-correlation functions have been discussed and experimentally tested in the underwater
acoustics community. Time-reversal imaging as introduced in section 2.4 has been
demonstrated experimentally and numerically in an underwater waveguide by Roux and
Fink (2000). Recently, Roux and Kupermann (2005) show, that it is possible to extract
information about ocean wave fronts from noisy data sets by combining TRI methods with
cross-correlation function techniques as discussed in section 3.1.4. For a comprehensive
overview on applications of TRI in underwater acoustics, see Kuperman and Jackson
(2002). In a series of further experimental, theoretical, and numerical studies (Roux and
Fink 2003, Roux et al 2004, Sabra et al 2005), the connections between cross-correlation
functions and Green functions have been investigated in ocean acoustics, see section 3.1.4 for
details.

3. Wave dynamics—statistical approaches

Analysing wave signals in terms of statistical measures has a long tradition in acoustics
predating the developments in quantum chaos and even the discovery of quantum mechanics
itself; a historical account is given in section 3.2. Recent advances in using statistical methods
are largely based on applying random matrix theory (RMT) to wave problems in the presence
of wave chaos and disorder. This connection was first discussed by McDonald and Kaufman
(1979, 1988), Casati et al (1980), Berry (1981) and Bohigas et al (1984) in a quantum
context and introduced into acoustics in a pioneering study by Weaver (1989a). We review
the relation between RMT and eigenmode spectra, wavefunctions, correlation functions and
weak localization phenomena in section 3.1. For open systems with energy loss through
absorption or other decay channels, decay time distributions and a statistical description of
power transfer are typically considered in acoustics and elastodynamics, see section 3.2. A
statistical technique widely used in the engineering community to estimate vibrational energy
transfer between parts of complex build-up structures, statistical energy analysis, will be
briefly introduced in section 3.3.



R476 Topical Review

3.1. Random matrix theory

Since the early work by Wishart on multivariate statistics (Wishart 1928), random matrix
theory has grown into an industry with applications ranging from condensed matter physics,
QCD, integrable systems, quantum and wave chaos, wireless communication, uncertainties
in structural dynamics, numerical linear algebra, signal processing and information theory to
number theory and free probability theory. We refer the interested reader to the excellent
textbooks and review articles highlighting the mathematical (Mehta 1991, Forrester et al
2004), physics (Efetov 1997, Guhr et al 1998, Haake 2001) and electrical engineering and
telecommunication (Tulino and Verdú 2004) aspects of the theory. We start by giving a brief
introduction of RMT before discussing the experimental and theoretical results on spectral
statistics in acoustics and elasticity. We consider in this section mostly systems for which
attenuation can be neglected; we come to a statistical treatment of open systems and transport
problems in section 3.2.

3.1.1. Introductory remarks. Random matrix theory deals with statistical properties of
ensembles of random matrices. In the context of spectra of self-adjoint operators, one considers
mostly ensembles of so-called Gaussian–Wigner matrices, that is, Hermitian N × N matrices
H with independently Gaussian distributed variables Hij , i � j with unit variance. One
distinguishes in particular the Gaussian unitary ensemble (GUE) of general hermitian matrices,
the Gaussian orthogonal ensemble (GOE) of real symmetric matrices and the Gaussian
symplectic ensemble (GSE) of Hermitian matrices invariant under symplectic transformations.
The physically most important ensembles are the GUE associated with wave operators with
broken time-reversal symmetry and GOE for systems which are time-reversal invariant. The
latter is the norm for classical wave equations and will thus be considered from now on.
Notable exceptions have been presented by Stoffregen et al (1995) and Schanze et al (2001),
where the breaking of time-reversal symmetry has been achieved in microwave experiments
by inserting ferrite into the cavity; however, at the price of strong absorption. For an overview
over other matrix ensembles considered in the literature, see for example Tulino and Verdú
(2004) and, in the context of vibrational dynamics, the work on uncertainties in structural
dynamics by Soize (2003, 2005). Often also the ensemble of real diagonal matrices with
random entries is considered which yields trivially a Poisson distribution for the eigenvalues.

For the Gaussian ensembles mentioned above, the joint probability distribution for the
eigenvalues can be given explicitly and from there, many statistical properties can be deduced
analytically. We mention here only two popular statistical measures: these are the two-
point correlation function R2(x) measuring spectral correlations over a distance x and the
nearest neighbour spacing (NNS) distribution P(s) expressing the probability distribution for
the distance between two adjacent eigenvalues of the ordered spectrum. After rescaling the
spectrum to a mean eigenvalue density one, one obtains for the GOE ensemble

R2(x) = 1 − s2(x) −
(∫ ∞

x

s(x ′) dx ′
) (

d

dx
s(x)

)

= π2

6
x − π4

60
x3 · · · for x � 1 (61)

with

s(x) = sin πx

πx
.

The correlation function vanishes linearly for x → 0 indicating linear repulsion between
nearby eigenvalues. Also the Fourier transformed Ŷ (τ ) of the level cluster function
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Y (x) = 1 − R2(x), the so-called form factor, is considered, often written in the form (here for
GOE):

K(τ) = 1 − Ŷ (τ ) =
{

2τ − τ ln(1 + 2τ) for 0 � τ � 1

2 − τ ln 1+2τ
1−2τ

for 1 < τ.
(62)

Note that K(τ) ∼ 2τ for τ � 1 and approaches one for large τ . The NNS distribution, popular
for comparing experimental and numerical results with theory, can not easily be written down
in closed form (Mehta 1991). For the GOE case, it is well approximated by a Rayleigh
distribution with variance

√
2/π , that is,

P(s) ≈ π

2
s e− π

4 s2
. (63)

Wigner obtained this as well as the results for the unitary and symplectic ensemble by carrying
out the calculations for 2 × 2 matrices. The remarkable level of coincidence with the
true distribution in all three cases gave rise to the name ‘Wigner surmise’ for this kind of
approximation. Note that the level repulsion is again linear for small s. For comparison, a
randomly distributed spectrum following a Poisson process yields

R2(x) = 1; K(τ) = 1; P(s) = e−s . (64)

Main parts of the theory were worked out in the 1950s and 1960s by Wigner, Dyson,
Gaudin, Mehta and others, see Forrester et al (2004) for a brief historical overview and
relevant references. In its early stages, it was mainly motivated by modelling properties of
excited states of atomic nuclei, then perceived as an intractable, complex many-body system
with largely unknown forces. It emerged in the early 1980s, that it is the complexity of the
underlying classical dynamics and not the many-particle aspect alone, which is captured by
random matrix ensembles (McDonald and Kaufman 1979, 1988, Casati et al 1980, Berry
1981); this was expressed explicitly by Bohigas et al (1984) conjecturing that the spectra of
quantum systems whose underlying classical dynamics is chaotic generically have statistical
properties following RMT. A couple of years earlier, it was argued by Berry and Tabor
(1977b) that quantum systems with integrable classical limit behave generically like a Poisson
process. Hannay and Ozorio de Almeida (1984) and Berry (1985) obtained the asymptotics
of the form factor for individual wave chaotic systems coinciding with the RMT result (62)
by starting from Gutzwiller’s semiclassical periodic orbit formula (34). Recently, the power
series expansion of the form factor could be reproduced using periodic orbit correlations in
fully chaotic systems. Starting from the τ 2 term (Sieber and Richter 2001, Sieber 2002), the
full expansion for K(τ) first for τ < 1 (Heusler et al 2004, Müller et al 2004, 2005) and later
also for all τ (Heusler et al 2007) has been worked out. Equivalent results for quantum graphs
as introduced by Kottos and Smilansky (1997, 1999) have been obtained by Berkolaiko et al
(2002, 2003) which in addition provide bounds for the border of the universal regime, see also
Tanner (2001). For quantum graphs, the random matrix conjecture could be confirmed using
super-symmetric techniques (Gnutzmann and Altland 2004, 2005).

Statistical measures related to parametric changes in the eigenfrequency spectrum have
been discussed at some length in the context of elastodynamics. Changing the properties of
an elastic or reverberant body as a function of a parameter t describing for example changes
in the volume, the shape or the elastic parameters of the body leads to variations in the
eigenfrequencies; an example is shown in figure 13 for a plate where one of the sides was
shortened and the relevant parameter t ≡ X is the mass of the total plate (Schaadt and Kudrolli
1999). After rescaling the spectrum to mean level density one (for each t) and normalizing the
parameter according to τ = σ t with σ 2 = 〈(dx/dt)2〉 with x, the rescaled eigenfrequencies,
one considers the velocity and curvature distributions P(v) and P(k) with vn = dxn/dτ and
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Figure 13. The transmission amplitude as a function of the frequency in steps of the parameter
X. The flexural modes are joined by a solid curve to guide the eye. Other modes pass through the
diagram without any interaction with the flexural modes. These are the in-plane modes, which are
not included in the data analysis (see text). Inset: the shape of the Sinai–Stadium plate. The side
which is polished to effect a parametric change is indicated by X (Schaadt and Kudrolli 1999).

kn = π−1 d2xn/d2τ of the parameterized eigenvalues xn. RMT predicts a standard Gaussian
distribution for P(v) (Simons and Altshuler 1993) and

P(k) = 1

2

1

(1 + k2)3/2
(65)

for the GOE ensemble (Zakrzewski and Delande 1993, von Oppen 1994, 1995 and Fyodorov
and Sommer 1995). Another popular measure is the velocity autocorrelation function

c(τ ) =
〈

dx

dτ0
(τ0)

dx

dτ0
(τ0 + τ)

〉
(66)

for which asymptotic results have been given by Szafer and Altshuler (1993), see also Bruus
et al (1996). The results above apply to parametric changes under global perturbations; the
case of localized perturbing potentials and the crossover regime is discussed in Marchetti
et al (2003).

3.1.2. Spectral statistics in elastodynamics.

Spacing statistics. Eigenvalue spacing statistics has been considered in acoustic as early
as 1946 (Bolt 1946a, 1946b, Schröder 1954a); actual experiments have been carried out by
Schröder (1954b) measuring the spacing distribution for rectangular cavities and comparing
the results with theoretical calculations predicting a Poisson process. In 1969, Lyon took
up the subject in the context of the then emerging SEA theory and briefly discussed the
Wigner surmise (63). However, based on the results of Schröder (1954b) and early data from
spacing distributions in nuclei, he concluded that level repulsion may lead to a depletion
of the distribution for small s, but that an exponential tail in P(s) is generic—in contrast
to the GOE result (63).6 This point of view has dominated the acoustics literature until

6 Such a behaviour is typical for pseudo-integrable systems (Bogomolny et al 1999, Bogomolny and Schmitt 2004);
plates or other structures carrying waves in an engineering context often contain straight edges meeting at rational
angles and may thus well be of pseudo-integrable type. The Poisson tail is easily destroyed, however, by e.g.
wave-splitting effects (Kohler et al 1997).
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recently, see for example (Fujisaka and Tohyama 2003). A systematic study of spectral
statistics in acoustics and elastodynamics started with Weaver (1989a), who measured the
eigenfrequency spectra of rectangular aluminium blocks using ultrasound detecting several
hundred spacings. The discrete symmetries of the blocks were broken by cutting slits into the
surface. Good agreement with GOE statistics was obtained, a result which was surprising at
first; in the light of the RMT conjecture (Bohigas et al 1984), one may expect that a regular
geometry such as an isotropic and homogeneous rectangular block would show deviations
from GOE and tend towards a Poisson distribution. It was thus suggested by Bohigas et al
(1991) and Delande et al (1994), that the slits act as defocusing elements effectively introducing
ray and thus wave chaos. Indeed, early experiments on aluminium blocks without slits
by Ellegaard et al (1995) seemed to indicate a Poisson spacing distribution. Subsequent
measurements on eigenmodes in rectangular blocks (Schaadt et al 2003a) and for in-plane
modes of rectangular plates (Schaadt et al 2001) revealed that the distributions are more in
line with a superposition of k-independent GOE spectra; here, k counts the number of discrete
symmetries with k = 4 for plates and k = 8 for blocks. The enhanced statistics in these
experiments was achieved by using plates and blocks made of fused quartz with a Q value7 of
the order 105–106 compared to about 5 × 103 for the experiments by Ellegaard et al (1995)
using aluminium. It is thus likely that the mixing between shear and pressure modes at the
boundaries or likewise the ray-splitting dynamics alone introduces enough ‘wave chaos’ to
ensure RMT statistics. The exact nature of the statistics of rectangular elastic bodies is still an
open questions; it is linked to the features of the underlying ray-dynamics when including ray
splitting as discussed in section 2.2.3.

Introducing a series of experimental innovations, the Copenhagen group led by
Ellegaard managed to obtain spectra and wavefunctions of eigenmodes of elastic bodies with
unprecedented accuracy. Details about the experimental set-up can be found in (Schaadt 2001).
Effects due to symmetry breaking were considered, first in an aluminium block (Ellegaard
et al 1995) and later in a block of anisotropic quartz (Ellegaard et al 1996). In both cases,
an octant of a sphere was gradually removed from one of the corners of the blocks and a
transition towards a single-GOE spectrum was observed. In the experiment by Ellegaard et al
(1996) using anisotropic quartz, the original quartz block was cut such as to possess a single
two-fold symmetry. By breaking this symmetry, details of the transition from two to one
GOE could be studied. They were found by Leitner (1997) to be in good agreement with the
theoretical predictions by Guhr and Weidenmüller (1990). Experiments with Sinai-shaped
(aluminium) plates were conducted by Bertelsen et al (2000) and a transition from two to one
GOE distributions was found after coupling in-plane and flexural modes by making cuts (of
half the thickness of the plate) into the surface; the mean density for both mode types (as
discussed in section 2.2.1) is approximately equal in the frequency range considered which
explains the two to one transition. The two mode types can be distinguished in the spectrum
by making use of the enhanced damping of flexural modes compared to in-plane modes under
an increase in air pressure from vacuum (<102 Torr) to atmospheric pressure (Schaadt and
Kudrolli 1999). Andersen et al (2001) varied the thickness of the plate slightly (by removing
material from the surface with sandpaper) which led to a variation in the position of the
resonance peaks; this made it possible to detect nearly degenerate eigenfrequencies and to
obtain the full spectrum for both mode types without missing levels. By gradually making a
single cut into the plate, the transition from two independent sub-spectra to one GOE spectrum
was measured and reproduced in an RMT model. The flexural modes of a clover-shaped plate
with C4v were measured by Neicu et al (2001) and computed numerically (Brodier et al

7 The Q value is defined as Q = f/�f where �f is the mean width of a measured resonance.
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Figure 14. Experimentally obtained curvature distribution P(k), (65), shown as crosses, and the
analytical GOE result as a solid line. There is a deviation in the centre, whereas the tails agree
well (Bertelsen et al 1999).

2001); the symmetry induces an exact degeneracy in the spectrum. A transition from an NNS
distribution strongly peaked at s = 0, a so-called Shnirelman peak, to full GOE is observed
when breaking the symmetry of the plate.

The statistical properties of the flexural modes of a stadium-shaped plates were modelled
numerically using the biharmonic equation (8) (Legrand et al 1992, Bogomolny and Hugues
1998, Neicu et al 2001); irregularly shaped membranes including damping were considered
by Burkhardt and Weaver (1996c). In all cases, good agreement with GOE was observed.

Parametric level variation. In 1999, the Copenhagen group presented two measurements of
parametric correlations on elastic bodies, which showed significant deviations from RMT.
Bertelsen et al (1999) measured the spectrum of a mono-crystalline quartz block having the
shape of a 3D Sinai billiard as a function of an external parameter, in this case the temperature.
The flexural eigenmodes of an aluminium plate were measured by Schaadt and Kudrolli
(1999) while changing the length of one side of the plate. In both cases, deviations from
the velocity and curvature distribution function (65) and velocity correlation function (66)
were found, see figure 14 and figure 15. The NNS distributions coincided well with the
GOE result in both cases. Statistical measures of parametric changes are known to be very
sensitive to non-chaotic features in the underlying dynamics resulting in deviations from RMT.
Non-universal curvature distributions were found for the Helmholtz equation by Takami and
Hasegawa (1992) and Sieber et al (1995) and could be attributed to the bouncing-ball orbits in
the stadium billiard. They vanished after eliminating this effect from the spectrum. Deviations
from RMT found in microwave experiments (Barth et al 1999b) have been related to the locality
of the perturbation introduced, see also Marchetti et al (2003). Such effects can, however, not
explain the deviations from RMT in the Copenhagen experiments. The perturbations applied
in both experiments act globally and bouncing ball contributions do either not exist (Schaadt
and Kudrolli 1999) or have been accounted for (Bertelsen et al 1999). This is in contrast to
the experiments on a clover-shaped fused-quartz plate by Neicu and Kudrolli (2002), where
deviations in c(τ ) for the flexural spectrum may be due to stable periodic orbits present in the
system. Two further studies on ray-splitting billiards as discussed in section 2.3 tried to shed
light on this issue. For two of the billiard problems considered, namely a ray-splitting annulus
(Hlushchuk et al 2000) and a triangular billiard (Savytskyy et al 2000), strong deviations from
RMT have been recorded. However, it is expected that in both cases, regions of stability exist
which may account for the non-universal features.
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Figure 15. (Bertelsen et al 1999): Experimentally obtained velocity correlator c(x) as crosses
versus unfolded temperature x, compared with the numerical GOE result (Bruus et al 1996). There
is a considerable deviation for medium values of x. As an inset, the experimental result for c(x) is
shown for the spectra from which the bouncing-ball-like modes have not been removed.

It was proposed that a hidden approximate symmetry may be responsible for the deviations
from RMT in the elastic body measured by Bertelsen et al (1999); this could be due
to non-complete coupling between transversal and longitudinal modes at the boundaries.
In two theoretical studies, the effect of symmetry breaking on the curvature distribution
P(k) was studied; Hussein et al (2002) obtained the transition from two to one GOE
numerically from a model Hamiltonian, while for a similar scenario the distributions were
calculated analytically by Ergün and Fyodorov (2003). In the latter study, the tendency of
having a higher probability for large curvatures when introducing symmetry—as displayed in
figure 14—could be reproduced. However, the exact nature of the deviations from RMT in
the experiments remains an open question.

3.1.3. Wavefunction statistics. The notion of random or diffusive wave fields in irregularly
shaped reverberant bodies has played an important role both in acoustics and elastodynamics
(Morse and Bolt 1944, Schröder 1959, Schröder 1962, Lyon 1969) and forms an integral part
of statistical transport theories as discussed in section 3.3. In these theories, an equilibrium
configuration is considered having its wave energy equipartitioned over the available (phase-
space) volume. This principle has been shown to hold rigorously by Shnirelman (1974)
stating that a generic eigenmode is equidistributed over ergodic components of the underlying
ray-dynamics in the limit ω → ∞; see also de Verdière (1985) and Zelditch (1987). Weaver
(1982) points out that the wave energy of a diffusive field in an elastic solid is distributed over
the different modes according to the relative density of eigenfrequencies for each mode-type
and thus, from Weyl’s law, relative to the phase-space volume available for each component of
the wave field. Equipartition in seismic signals confirming this expectation have been reported
by Hennino et al (2001).

A connection between random wave fields and the underlying ray dynamics has been
established by Berry (1977b). He conjectured that in the presence of ray chaos, individual
eigenfunctions of the scalar Schrödinger equation behave in the asymptotic limit on small
scales like a superposition of plane waves with fixed wave number k sampled randomly over
the wave direction k/k and phases. A proof of this conjecture for ballistic systems (performing
averages by adding a random potential) has recently been given by Gonyi and Mirlin (2002).
It follows immediately that the wavefunction amplitudes u are Gaussian distributed and that
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the intensities obey a one-dimensional χ2 distribution, that is,

P(|u|2) =
√

1

2π |u|2 e−|u|2/2. (67)

Relation (67) has originally been considered in the context of resonance-width distributions in
nuclei and is often referred to as Porter–Thomas distribution (Porter and Thomas 1956, Porter
1965), see also section 3.2.3. Scalar random waves show correlations on length scales of the
wavelength, that is,

C(r; x) = 〈u(r)u(r + x)〉 = �

(
d

2

)(
2

kx

) d
2 −1

J d
2 −1(kx), (68)

where �(x) is the Gamma function, Jν denotes Bessel functions and d is the dimension of the
system; one thus finds C(x) ∼ J0(kx) and C(x) ∼ sin(kx)/kx in two and three dimensions.
For the intensity correlation function, one obtains assuming a Gaussian random process

CI (r; x) = 〈u2(r)u2(r + x)〉 = 1 + 2C2(r, x), (69)

where the relation on the RHS is again valid only on scales of a few wavelengths; it is
assumed that the wavefunctions are normalized such that 〈u2(r)〉 = 1. The so-called inverse
participation ratio is given as

Ip = CI (r; 0) = 〈u4(r)〉
〈u2(r)〉2

. (70)

One thus obtains Ip = 3 from RMT. Equations (68) and (69) are indeed valid only on
short scales of the order of a wavelength and correspond to a zeroth-order approximation.
Corrections due to the presence of boundaries in billiards have been discussed by Berry (2002),
Bies et al (2003), Wheeler (2005) and others. A more systematic way for expressing deviations
from the random wave approximation has been presented by Hortikar and Srednicki (1998a,
1998b) and Urbina and Richter (2003, 2004, 2006); the authors point out that the correlation
function (68) can be written in terms of the Green function, that is,

C(r; x) = 2ω

π
〈Im G(r, r + x; k)〉, (71)

where the average is taken over a small frequency range. After inserting semiclassical
expressions of the form (28), one obtains the Bessel function contributions in (68) to leading
order with corrections given by classical orbits. Akolzin and Weaver (2004) generalize (71)
to vector wave equations such as the Navier–Cauchy equation (16) using the Green function
in tensorial form. The correlation functions for vectorial eigenfunctions are in analogy to (68)
given by the free tensor Green function of the wave equation. Result (71) is also valid for open
systems in equilibrium with a diffusive environment (Weaver and Lobkis 2004); here, the field
is considered locally in a volume V produced by an incoherent superposition of incoming
random waves. The Green function is in this case obtained inside V .

Wavefunction intensities for both flexural and in-plane eigenmodes were measured
experimentally by the Copenhagen group for aluminium plates being Sinai and stadium-
type shaped as well as for rectangular plates (Schaadt et al 2001, Ellegaard et al 2001, Schaadt
et al 2003b). Examples of measured wavefunctions are displayed in figures 16 and 17 as well
as in figure 6 taken from (Ellegaard et al 2001, Schaadt et al 2001). The difference between
regular and chaotic geometries becomes clear by inspection, see figures 16 and 17. Note,
however, that the biharmonic equation (8) is not separable for rectangular geometries other
than for clamped boundaries (Gorman 1978, Gorman 1982). The separability observed in
the experiments, figure 17, is thus only approximate, but is well fulfilled sufficiently far from



Topical Review R483

Figure 16. Measurement of wavefunction in the chaotic Sinai billiard: in-plane mode (on the left)
versus flexural mode (on the right); note the difference in wavelength at comparable frequencies
(Ellegaard et al 2001).

Figure 17. Rectangular plate of fused quartz: regular wavefunctions of flexural-type from
(Ellegaard et al 2001, 2003).

the boundary where the wavefunctions are in good approximation solutions of the Helmholtz
equation with modified boundary conditions, see section 2.2.2.

The validity of the Porter–Thomas distribution was confirmed both for bending and in-
plane eigenmodes; this was also found in numerical studies for the biharmonic equation in
chaotic cavities (Brodier et al 2001). Further, Schaadt et al (2003b) demonstrated, that for
bending modes the intensity correlation functions follow the scalar Gaussian wave model (68).
For in-plane modes carrying two polarizations with different wave speeds, the correlations
show significant deviations from the scalar case revealing the vectorial nature of the wave
equations. Possible theoretical treatments were discussed in (Schaadt et al 2003b, Akolzin
and Weaver 2004); a related study on three-dimensional microwave cavities was carried out
by Eckhardt et al (1999) showing good agreement between theory and experiment.

3.1.4. Recovering the Green function from cross correlations. Lobkis and Weaver (2001b,
2003) and Weaver and Lobkis (2001, 2002, 2003) point out, that the cross-correlation function
for a chaotic wave field can be written in the form

Ĉ(r, r0, t) =
∫

dt u(r, τ )u(r0, t + τ) ∼ d

dt
[Ĝ(r, r0, t) − Ĝ(r, r0,−t)], (72)

where Ĝ(t) is the Green function in the time domain, equation (25), describing wave
propagation form a source point r0 to r in time t. Equation (72) follows immediately from (71)
when going from the frequency domain to the time domain. The relation holds for random
(diffusive) fields in the regime where there is no net current into or out of a region containing
both r and r0. It implies, that information about the Green-function, that is, the response of the
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system at point r to an excitation at r0, can be obtained by measuring a ‘noisy’ signal at r0 and
r simultaneously. The diffusive field may be produced at some other point r′ (such as by an
earthquake) or may be due to thermal phonons or some other form of random excitation. This
makes it possible to perform ultrasonic measurements without a source (Weaver and Lobkis
2001, 2003) which is of particular importance to seismology and underwater acoustics. Note,
that the cross-correlation function is symmetric about t = 0 due to time-reversal symmetry
which is reflected in the terms Ĝ(t) and Ĝ(−t) on the LHS in (72); recall that Ĝ(t) is non-zero
for t > 0 only.

This idea was in fact presented earlier in helioseismology by Duvall et al (1993), Gough
et al (1996) and Ricket and Claerbout (1999). Its full potential started to emerge only after the
theoretical and experimental work by Weaver and Lobkis (2001, 2003). They demonstrated
that the autocorrelation function obtained from thermal noise in a cylindrical aluminium body
coincides with the signal obtained from a pulse-echo experiment and thereby managed to
reconstruct Ĝ(r, r, t) for short times. In a similar experiment, the same authors studied the
cross-correlation function Ĉ(r, r0, t) of an experimental signal obtained from a single-source
excitation (Lobkis and Weaver 2001b, Weaver and Lobkis 2002). The results were less
convincing prompting a series of papers on the influence of absorption and the extension of
the idea to open systems (Derode et al 2003a, 2003b, Weaver and Lobkis 2004). It was pointed
out that relation (72) holds for open systems as long as there is a random distribution of sources
or more generally, the local wave field is in equilibrium with a global random field and there
is no net flux. There is a close relationship between cross-correlated signals and time-reversal
imaging as discussed in section 2.4. Cross correlation and convolution with a time-reversed
signal are identical operations; using a generalization of the cavity equation (59), the cross-
correlation function (72) can be obtained by applying a pulse at r0 and recording at some point
r′ (Derode et al 2003a, 2003b). Exciting the medium with the time-reversed signal again at r′

leads to refocusing of the wave field at r0; this implies, that the signal measured at the point r
is equivalent to Ĉ(r, r0, t) (up to a convolution with the Green function Ĝ(r′, r′, t)).

van Tiggelen (2003) re-derive (72) in terms of a diffusion equation obtained from multiple
scattering theory. The asymmetry around the point t = 0 often observed in experimental data
is related to deviations from equipartition of the wave field (Malcolm et al 2004). Weaver and
Lobkis (2005a, 2005b) give estimates for the variance of the reconstructed Green function
both for open and closed systems. It is established that the variance scales like

var Ĉ(t) ∼ (tH/t)2(1 − exp(−2tH/t)),

where tH is the Heisenberg time and t is the sampling time. Here, the variance is large for
small sampling time t at high frequencies as tH ∼ ω2. The theoretical studies mentioned
above are mostly based on a modal picture expressing the Green function in terms of the
eigenfunctions strictly valid only for closed systems. A theoretical analysis relating the cross-
correlation function to the time-dependent Green function written in terms of ray paths has
been presented by Snieder (2004) and Roux et al (2005) for the ballistic case and by Sabra
et al (2005) in the presence of multiple scattering in an ocean wave guide. Recently, de
Verdiére (2006) picked up this theme giving a rigourous mathematical description in terms of
pseudo-differential operators and random fields.

The effect can be used most efficiently in analysing ambient noise data in seismology.
Campillo and Paul (2003) considered the late seismic coda, that is, the diffusive signal
following an earthquake, for 110 earthquake events measured simultaneously at two different
locations in central Mexico. The cross-correlated signal clearly exhibited peaks at travel times
of the corresponding Rayleigh and Love surface wave between the two locations. In a further
large-scale study by Shapiro and Campillo (2004) and Shapiro et al (2005), surface wave
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Figure 18. Signals measured between two seismological stations in California (PHL versus
MLAC). Top: earthquake pulse. Middle: cross correlations of ambient seismic noise over one
year. Bottom: four samplings over three months of ambient noise. The earthquake signal was
normalized to the noise signal from Shapiro et al 2005. Reprinted with permssion from AAAS.

speeds could be mapped with an unprecedented resolution by measuring ambient seismic
noise on a grid of stations in California, see figure 18. The results depend, however, on the
time window chosen reflecting the fact that the seismic wave field is not fully diffusive. This
allows for a depth-dependent analysis. The connection between cross-correlation functions,
TRI and seismology has recently been reviewed by Larose et al (2006).

Coherent wave signals could also be extracted from noisy data sets in ocean acoustic
waveguides as discussed in section 2.6. This was demonstrated in numerical simulations
(Roux and Fink 2003, Sabra et al 2005) as well as using experimental data taken from an
array of hydro-phones (Roux et al 2004). It was shown that the dominant contribution to
the signal comes from noise sources aligned with the two receivers producing the cross-
correlated signal. Roux and Kupermann (2005) went a step further by producing a time-
reversal mirror as discussed in section 2.4 using the cross-correlation function obtained from
passive noise measurements thereby mimicking a true, that is, active point source! The
coherent backscattering effect, discussed in the next section, has been demonstrated using
cross-correlation functions (Larose et al 2006) allowing for an enhanced spatial resolution for
small (virtual) source and receiver distances.

3.1.5. Weak localization and the modal echo. Weak localization, more commonly known
as coherent backscattering in the acoustics literature, has first been discussed in the context
of electronic transport through disordered media and Anderson localization; see Bergmann
(1984) and references therein. The effect amounts to an enhancement of the backscattered field
at the source. In a typical experiment, the field is excited by a localized pulse at a source point
r0 and returns to that point after undergoing multiple, chaotic scattering in some medium. The
ensemble averaged intensity distribution for times larger than some characteristic scattering
time is considered. For open scattering systems, the field intensity at r0 is enhanced by a
factor of 2 compared to the far-field intensities. For closed systems such as cavities, one
observes an enhancement rising from two to three for times larger than the Heisenberg time
(Weaver and Burkhardt 1994); this increase has been called modal echo by Weaver and Lobkis
(2000a).

The factor 2 can be easily explained in a ray picture; due to time-reversal invariance,
every path from r0 → r0 has a time-reversed partner with which it interferes constructively. In
closed systems with an underlying classically chaotic dynamics, there is an extra contribution;
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Figure 19. (Weaver and Lobkis 2000a): experimental observation of the modal echo, that is, the
enhancement of the coherent backscattering peak from a factor 2 to 3; different curves correspond
to different frequencies and thus different TH.

the initial impulse leads to a random wave field which can be expressed in terms of a random
superposition of the eigenfunctions of the cavity. The time dependence of the intensity of the
wave field at point r excited initially at r0 can for times t > tEhrenfest

8 be written in terms of the
correlation function C(r0, r) (69) (Weaver and Burkhardt 1994, Weaver and Lobkis 2000a,
de Rosny et al 2000, Langley and Cotoni 2005). Including correlations due to RMT, one
obtains in particular

〈|u(r0, r; t)|2〉 = 1 + [1 + K(t/tH)] C2(r0, r), (73)

where K(t) denotes the form factor defined in (62) and tH is the Heisenberg time. (tH is
proportional to the mean level density, and may thus be regarded infinitely large for open
systems.)

Coherent backscattering peaks were first observed in optics in the 80s by Tsang and
Ishimaru (1984), Van Albada and Lagendijk (1985) and Wolf and Maret (1985). Experiments
in acoustics started in the 90s recording the backscattered signal from a random media
immersed in water (Bayer and Niederdränk 1993, Sakai et al 1997, Tourin et al 1997).
In particular, Tourin et al (1997) used the time dependence of the pulse width to extract
information about dynamic transport properties of the medium such as the diffusion constant.

Weak localization in closed systems was first considered in the context of quantum dots by
Prigodin et al (1994) and then derived in terms of an eigenfunction expansion of the propagator
(Weaver and Burkhardt 1994). A first experimental verification of the transition from 2 to 3
was given by Weaver and Lobkis (2000a) using a 3D irregular shaped aluminium block, see
figure 19. Recently, Larose et al (2006) measured coherent backscattering signals passively
using cross-correlation methods as discussed in the previous section. Both active (laser) and
passive (thermal phonons) sources have been considered; deviations from the enhancement

8 The Ehrenfest time is the time at which classical and quantum evolution deviate and is for chaotic systems of the
order tEhrenfest ∝ log k.
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factor 3 in the passive experiment was attributed to losses. Excitation by polarized sources was
considered experimentally using silicon plates by de Rosny et al (2001) and numerically by
Margerin et al (2001), van Tiggelen et al (2001). Polarized sources are particularly important in
seismology as earthquakes emanating from dislocations often have a large bipolar component.
Weak localization has been observed in an experiment with seismic waves in (Larose et al
2004).

Weak localization is often discussed in the context of Anderson localization, that is, the
regime where wave solutions are localized in extended systems due to the presence of disorder.
Strong localization is a phenomenon linked to multiple scattering, interference and classical
diffusion; it depends crucially on the dimension of the system and its interpretation in terms
of an underlying ray dynamics and wave chaos is still an open problem. This review focuses
on the interplay between wave and ray dynamics and no attempt will be made here to cover
the extensive literature on Anderson localization in general and in acoustics and elasticity in
particular.

We refer the reader with particular interest in localization phenomena to the reviews by
Guhr et al (1998) focusing on concepts from random matrix theory, (Beenakker 1997) with
special emphasis on wave transport and Hodge and Woodhouse (1984) covering localization
in elastic media. Some more recent studies on localization and its influence on the description
of wave transport through elasto-mechanical systems can be found in Weaver and Burkhardt
(2000), Weaver and Lobkis (2000b) and Grönqvist and Guhr (2005). For time resolved studies
considering pulse transmission through disorder, quasi-one-dimensional microwave guides,
see for example Titov and Beenakker (2000), Schomerus et al (2000, 2001), Chabanov and
Genack (2001), Chabanov et al (2004) and references therein. The dynamics of localized
wave fields in three-dimensional, open systems has been considered by Skipetrov and van
Tiggelen (2006).

3.2. Transport and decay in dissipative systems

Signals in acoustics are often dominated by dissipation due to, for example, wall absorption
of acoustic waves, energy loss caused by internal friction in elastic bodies or damping due
to coupling at boundaries. From a wave perspective this leads to finite width resonances and
wavefunctions coupled to decay channels. The study of signal decay, energy transfer through
open systems and the statistics of their fluctuations has a remarkable history in acoustics and
goes back more than a century; it ranges from early attempts to measure and predict decay
times in reverberation rooms such as concert halls in the late 19th century to a general theory
of vibrational energy flow in large build up structures (such as cars or buildings) and recent
studies describing fluctuations in the Green function within the framework of RMT using
super-symmetric methods.

3.2.1. Decay times—early considerations. Sabine (1992, 1964) found experimentally that
the exponential decay of acoustic signals often does not depend on the shape of the room, but
is given by a simple universal expression for the decay time TS , that is,

TS = 4V

S

1

vα
, (74)

where V and S are the volume and surface of the room, respectively, v is the speed of sound
and 0 � α � 1 is the mean surface absorptivity. The expression 4V/S can be interpreted as
the mean distance between two points on the surface of a three-dimensional convex body. The
latter result dates back at least to Czuber (1884) and Clausius (1889). (In two dimensions,
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4V/S is replaced by πS/P , where S is the area and P the perimeter). Relation (74) is valid
only for small absorptivity α, extension to intermediate α values yields

TNE = −4V

S

1

v ln(1 − α)
, (75)

often referred to as Norris–Eyring time (Fokker 1924, Schuster and Waetzmann 1929, Eyring
1930), see also Morse and Bolt (1944). The universality of Sabine’s formula (74) or equation
(75) was soon questioned leading to a discussion on the relation between decay times and
the underlying (acoustic) ray dynamics. It was found that Sabine’s formula does not hold
for rectangular rooms without dispersing elements such as for example an audience (Fokker
1924). The confusion was lifted only in the 1970s when the connection between the validity
of Sabine’s law and ergodicity of the corresponding ray dynamics became clear, see Joyce
(1975) and references therein. Joyce (1975) points out in particular that universality holds
only if the correlation time Tc measuring the decay of correlations in the ray dynamics obeys
the relation Tc � TNE . The inequality ensures that phase space is sufficiently explored before
absorption takes over9. Legrand and Sornette (1990) test Sabine’s law numerically for the
classical ray dynamics in enclosures such as stadium or Sinai billiards. Good agreement with
equation (75) is found for small absorption, but deviations occur due to non-exponential decay
of correlation in these systems caused by bouncing ball orbits (Mortessagne et al 1992, 1993).
Corrections to the Norris–Eyring law due to fluctuations in the mean free path length between
bounces with the billiard boundaries have been considered by Mortessagne et al (1992, 1993),
see also Kuttruff (1970, 1971).

With the arrival of dynamical systems theory in the 1980s, it became clear that the
above mentioned decay times are approximations of the so-called classical escape time Te

(Kadanoff and Tang 1984, Blümel and Smilansky 1988, Doron et al 1990, 1991, Lewenkopf
and Weidenmüller 1991). In open chaotic systems, Te measures the exponential decay of the
probability P(t) ∼ exp(−t/Te) for a particle to stay in the reverberation or reaction region;
absorption is treated here as an escape channel. The escape rate γe = 1/Te is the leading
eigenvalue of a linear phase-space propagator, the Perron–Frobenius operator (Cvitanović
and Eckhardt 1991); effective methods for calculating these eigenvalues can be found in
(Cvitanović et al 2006) and references therein.

The above analysis is entirely based on the classical ray dynamics and gives the mean
decay of acoustic or elastic signals neglecting fluctuations due to wave interference. Different
approaches are favoured in different communities when dealing with the full wave problem.
In quantum systems, the excitation of a system due to particles such as photons, electrons
or neutrons has a strong influence on the systems as a whole and the process is best treated
as a scattering problem with well-defined entrance and exit channels. This is in contrast to
acoustics and elastodynamics, where the main source of dissipation is due to absorption in the
interior or on boundaries whereas the influence of the source or the receiver on the system is
often negligible. A Green function approach including absorptive channels is thus favoured
here. Both approaches are of course closely related, see Kuhl et al (2005) for a discussion of
this topic.

3.2.2. The Green function approach and the scattering matrix. The wave equation with
absorption can be written in an operator form as

H = H0 − iWWT , (76)

9 Joyce talks about a mixing time; Legrand and Sornette (1990) point out the importance of the correlation time as
the relevant time scale.
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where H0 is the linear operator for the isolated system without absorption and W represents the
coupling to dissipative channels such as contacts, friction or absorption at boundaries. For the
wave equations considered here, H0 can be chosen real symmetric reflecting the time-reversal
symmetry of the problem; the real matrix elements Wij represent the coupling of the ith
wavefunction to the j th channel. It is assumed that the coupling is independent of frequency.
This is assumption is generally valid in the high-frequency limit and for chaotic wave fields
where the coupling elements are roughly constant over frequency ranges large compared to
the mean separation of resonances. Note that the actual number of channels does not enter
into (76); absorption acts as a multitude of dissipative channels and it is often easier to work
with the symmetric operator WWT instead, whose matrix elements may be deduced from
experiments or taken randomly from appropriate matrix ensembles.

In a typical experimental situation, a force F is applied to the system at a source point r0

with frequency ω and the signal is detected by a receiver at r. The stationary wave field u(r)
induced by a localized source is a solution of the inhomogeneous equation

(ω2 − H)u(r) = Fδ(r − r0)

with appropriate boundary conditions. The wave amplitude at the receiver is then proportional
to the Green function including dissipation, that is,

G(ω) = 1

ω2 − (H0 − iWWT )
. (77)

It is assumed here, that source and receiver do not act as dissipative channels themselves
and thus do not influence the pole distribution of G. The acoustic energy absorbed by the
source or receiver can in general be kept small when injecting or detecting signals through
point contacts; this is in contrast to quantum systems or microwave cavities where source and
receiver generally act as scattering channels.

The operator H is complex symmetric with complex eigenvalues (ωn − iγn)
2 and

eigenfunctions un(r). For a typical system, the eigenvalues of H will be distinct, and one
can write the Green function in spectral form as

G(r, r0, ω) =
∑

n

un(r)un(r0)

ω2 − (ωn − iγn)2
. (78)

where one uses the fact that∫
dr un(r)um(r) = δn,m (79)

for the square-integrable, in general complex eigenfunctions un. Note, however, that H
in contrast to H0 is not necessarily diagonalizable as (79) does not induce a norm, i.e.∫

dr u2(r) = 0 does not imply u ≡ 0 for complex wavefunctions.
The Green function (78) or its modulus, the power transmission function T (r, r0, ω) =

|G(r, r0, ω)|2, are of special importance in elasticity and acoustics; they describe the transport
of wave energy through a system. The Green function is closely related to the scattering
matrix through

S = 1 − 2iWT 1

ω2 − H
W = 1 − 2iWT GW, (80)

describing the transition between well-defined scattering channels.
Schröder (1962) first coined the term statistical wave acoustics for analysing the seemingly

random response signals obtained from typical reverberation chambers. The connection to
RMT was established only in the late 1980s by Weaver (1989a). Recent progress in analysing
scattering processes in the framework of random matrix theory has led to a wealth of results
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in a quantum context, see for example the review articles by Fjodorov et al (2005) on the
application of super-symmetric techniques in RMT as well as by Stöckmann (1999) and Kuhl
et al (2005) focusing on experimental verification of the results in microwave billiards. A
statistical treatment of dissipative systems in acoustics and elastodynamics has focused on
correlations in the Green function G(ω) and the variance of the power transmission function
T 2(ω) which will be reviewed below. The power variance is of interest to an SEA treatment
as presented in section 3.3 and has so far defied a full random matrix analysis.

3.2.3. Correlations in the Green function. Starting from (78), Schröder (1962) considered
the Green function in the time domain, (25), that is,

Ĝ(r, r0; t) =
∑

n

un(r)un(r0)

2i(ωn − iγn)
e−iωnt−γnt . (81)

Approximating the decay rates by their mean value 〈γn〉 = γ̄ and treating the wavefunctions
un’s as Gaussian random fields, one obtains

Ĉ(t) = 〈|Ĝ(t)|2〉
〈|Ĝ(0)|2〉 ≈ e−γ̄ t (82)

after averaging over source and receiver positions. The exponential decay immediately leads
to a Lorentzian shape of the auto-correlation function, that is,

C(ω) = 〈G(ω0 + ω/2)G∗(ω0 − ω/2)〉
〈|G(ω0)|2〉 =

∫
dt Ĉ eiωt ≈ 1

1 + γ̄ 2ω2
. (83)

Schröder associated 1/γ̄ with Sabine’s decay time (74). The connection to the classical decay
time becomes apparent when writing Ĉ(t) in (82) in terms of semiclassical approximations for
Ĝ(t) similar to (28); the dominant contributions to the resulting double sum over trajectories
from r0 to r stems from diagonal terms and one obtains

Ĉ(r, r0, t) ≈
∑
r0→r

∣∣Ar0→r

∣∣2 = L(r, r0, t) ∼ e−γet , (84)

where Ar0→r is the semiclassical amplitude and L is the Frobenius–Perron operator, a classical
propagator acting on phase-space densities (Cvitanović et al 2006). The decay pattern is thus
determined by the eigenvalue spectrum of L; the eigenvalue closest to the real axis gives
the escape rate γe (Cvitanović and Eckhardt 1991) which dominates decay of the correlation
function for large t (Blümel and Smilansky 1988, Doron et al 1990, 1991, Lewenkopf and
Weidenmüller 1991, Lai et al 1992). Eigenvalues of the Frobenius–Perron operator other
than γe give rise to fast decay on short time scales which has been verified in microwave
experiments by Pance et al (2000).

Remarkably, Schröder (1962) derived (83) for room acoustics independently and at about
the same time as Ericson working in nuclear scattering (Ericson 1960, 1963). It took another
30 years until acoustics fully embraced the usefulness of random matrix theory in a statistical
description of wave phenomena.

Schröder (1965) also noted that exponential decay is only valid in the limit of uniform
damping or a large number of dissipative channels. Defining the number of dissipative channels
ν as the rank of W , we may write the decay width as

γn = 1

ωn

ν∑
i=1

ηi

∣∣ui
n

∣∣2
,

where ui
n is the projection of un on the ith channel and ηi are (real) coupling constants. The

decay widths are distributed according to sums over squares of Gaussian random variables if
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the wavefunctions un(r) behave like Gaussian random functions, as is generally assumed in
section 3.1.3. If the un(r) are furthermore approximately real (Burkhardt and Weaver 1996b)
and the ηi are independent of n, one obtains a χ2 - distribution with ν degrees of freedom, that
is,

Pν(γ ) = ν

(2γ̄ )ν/2

γ ν/2−1 e− ν
2γ̄

γ

�(ν/2)
, (85)

where �(x) is the Gamma function. Decay then becomes algebraic, that is,

Ĉ ∼
(

1 +
2t γ̄

ν

)− ν
2

(86)

approaching the exponential distribution (82) only in the limit ν → ∞. These results, well
known from nuclear physics (Porter and Thomas 1956, Porter 1965), have been introduced by
Schröder (1965) and later by Burkhardt and Weaver (1996b) and Burkhardt (1997) into the
acoustics community. However, absorption in reverberation rooms or elastic media tends to be
uniformly distributed leading to WWT ∼ �̄I with I the identity, and thus exponential decay.
Algebraic tails in response signals (often referred to as ‘decay curvature’, that is, deviations
from purely exponential decay) have been reported in acoustic reverberation chambers
(Kawakami and Yamiguchi 1986, Bodlund 1987) and in experiments on aluminium blocks
(Burkhardt 1998, Lobkis et al 2000), where ν and γ̄ were treated as fit-parameters. Burkhardt
(1997) suggested to use this information as a measure for non-destructive characterization of
micro structural damages in materials; dislocations contribute indeed to a large part to the
friction and thus dissipation in elastic bodies. Experiments performed on aluminium blocks
for which localized areas of increased friction were simulated by adding water-filled plunge
cut slots on top of the block were reported by Burkhardt (1998). Information about the area
of enhanced friction could be extracted.

For a more sophisticated treatment of the correlation functions (82) and (83), one averages
over an ensemble of Hamiltonians H0 in (77); the ensemble average can be carried out using
super-symmetric techniques, see (Verbaarschot et al 1985, Fjodorov and Sommers 1997). A
controlled experiment comparing (86) with super-symmetric results is difficult in the presence
of absorption as the channel number ν is usually not well defined. Lobkis et al (2003)
circumvented this problem by attaching a wire to an aluminium block. The wire was immersed
in water acting as a sink with a well-defined number of channels. By subtracting the decay
signals with and without wire, an algebraic decay curve could be extracted with fitted channel
numbers ν in agreement with expectations. The experimental curves were compared to both
(86) and the full super-symmetric result; small but significant differences at high frequencies
and thus large resonance overlap could be detected clearly favouring the full RMT result. It is
remarkable that after a century of studying response decay signals, acoustics and ultrasonics
provide the most sensitive tests of a statistical theory originally developed in a quantum setting.

3.2.4. Variance of the power transmission function. The mean energy density induced in a
given part of the system by a source at some point r0 (as used in an SEA treatment) can be
obtained from

E(ω) ∼ 〈T (r, r0;ω)〉, (87)

where T = |G|2 is the transmission function and the averages are carried out over receiver and
source positions. As pointed out in Lyon (1969), a proper analysis of the range of applicability
of SEA needs information about the fluctuations in the energy density. This requires the
evaluation of quantities not normally considered in quantum scattering theory such as the 4th
moment 〈|G|4〉 ∼ 〈|T |2〉 discussed in more detail below.
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Lyon (1969) and Davy (1981, 1987) noted that the 2-point correlation function R2(x)

measuring correlations between the real parts of the resonances, ωn, plays a role in evaluating
〈T 2(r, r0;ω)〉. The energy density E(ω), on the other hand, is independent of these
correlations (assuming real un); including decay rate distributions according to equation
(85), Burkhardt and Weaver (1996a) obtained

E(ω) ∼ 〈|G|2〉 ∼ dπ

γ̄

1

1 − σ
(88)

with σ = 2/ν, the relative variance of the χ2 distributions Pν(γ ). Here, d denotes the mean
density of resonances in the same way as Weyl’s law gives the mean density of eigenmodes in
a closed system. (The concept of a mean density is somewhat vague for a dissipative system
and is here in general understood as the density of eigenfrequencies of the corresponding
isolated system.)

Assuming constant decay rates γn, Legrand et al (1995) showed that the Fourier
transformed averaged input impedance has, in contrast to the correlation function (82), the
form

ĈI (t) = 〈|Tr Ĝ(t)|2〉
〈|Tr Ĝ(0)|2〉 ≈ e−γ̄ tK(t/d) ≈ t

d
e−γ̄ t , (89)

where K(t/d) denotes the spectral form factor (62). The auto-correlation function for Tr G(ω)

thus becomes the derivative of a Lorentzian.
The relative variance of the power transmission function is a useful tool to measure

deviations from the mean energy density as obtained in (88) or in an SEA analysis. It turns
out that the relative variance

relvar = 〈T 2〉
〈T 〉2

− 1

is very sensitive to the various approximations made. Early attempts (Lyon 1969, Davy 1981,
1987, Weaver 1989b, Burkhardt and Weaver 1996a) arrived at expressions of the form

relvar = 1 +
1

M̄

(
I 2

p − 3a + 4σ
(
I 2

p − a
))

(90)

where M̄ is the so-called modal overlap factor, that is, the ratio of mean decay rate to the
separation of nearby resonances � = 1/d(ω), that is,

M = 2πd(ω)γ̄ ∼ ωd−1, (91)

Ip is the inverse participation ratio (70) and a is a measure for the degree of level repulsion
with a = 0 for a Poisson distribution and a = 1 for GOE. Equation (90) was presented in
this form first by Burkhardt and Weaver (1996a) and includes decay rate variations according
to (85) as well as level repulsion, albeit using a fairly crude approximation for the form factor
(62) (Weaver 1989b).

Result (90) was seemingly in good agreement with experiments (Davy 1981, 1987) and
numerical simulations (Burkhardt and Weaver 1996a). A more careful study by Lobkis et al
(2000) comparing experimental data from aluminium blocks to a refined theory retaining
the full GOE and χ2 expressions led to significant discrepancies. The authors concluded
that the remaining approximations, namely the assumption of real wavefunctions u and the
statistical independence of real and imaginary parts of the eigenvalues are not satisfied. It was
indeed shown theoretically and confirmed experimentally that by dropping the assumptions
of real u, the inverse participation ratio Ip decreases from 3 to 2 as the ratio 〈Im u〉/〈Re u〉
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increases (Lobkis and Weaver 2000) bringing theory more in line with experiment. A similar
study implementing GOE-statistics for the spacings, but assuming constant resonance widths
has been carried out by Langley and Brown (2004a, 2004b) leading to a generalization of
equation (90); agreement with numerical results is again only obtained when choosing Ip ≈
2.75, that is, different from the random matrix expectation Ip = 3. Extension of these results
including spatial correlation in the ensemble averaged transmission function (68) and the modal
echo (73) have been presented in (Langley and Cotoni 2005). Accompanying numerical and
experimental results can be found in (Cotoni et al 2005).

A full treatment based on evaluating the fourth moment of the Green function (77) by
averaging H0 over an appropriate matrix ensemble and using super-symmetric techniques was
carried out by Rozhkov et al (2003, 2004). In a first calculation, results for averaging over
the physically less interesting GUE ensemble were obtained and excellent agreement with
numerical simulations was found (Rozhkov et al 2003). The more challenging case of GOE
statistics was tackled by Rozhkov et al (2004); however, parameters in the theoretical model
can no longer be related easily to measurable quantities (such as γ̄ ) which prevented a direct
comparison between theory and experiment so far.

3.3. Statistical energy analysis (SEA)

A technique widely used for estimating the power flow of elastic wave energy in large built-
up structures such as vehicles, buildings or other multi-component objects is the so-called
statistical energy analysis (SEA). The theory is based on a flow model describing mean values
for the energy distribution in sub-components of the structure under a set of simplifying
assumptions. Testing the validity of these assumptions and getting reliable estimates for the
variance of the energy distribution function naturally leads to connections with wave and ray
chaos problems as discussed in section 2. It also triggered the interest in spectral statistics of
reverberant bodies as discussed in section 3.1 and especially section 3.2.4. We provide here
an overview over the main ideas behind SEA and discuss briefly some of the more recent
developments. The textbooks by Keane and Price (1994), Lyon and DeJong (1995) and Craik
(1996) provide a more in depth introduction and give practical engineering applications.

The starting point for an SEA treatment is a division of the whole system into subsystems;
this will usually be along natural boundaries, such as joints between plates or walls in a
building. Vibrational energy is pumped into the system from sources (such as motors, etc)
and is distributed throughout the systems in terms of vibrational energy in one form or
another. The goal of an SEA analysis is to get estimates for the distribution of energy between
these subsystems. These estimates are subsequently converted to quantities of interest for
engineering purposes such as mean-square vibrational levels, sound, pressure and noise levels,
etc.

The basic idea of SEA goes back to Lyon (1969) who adopted a ‘thermodynamical’
approach describing the power flow between subsystems in the form

Pij = ωd̄iηij

(
Ei

d̄i

− Ej

d̄j

)
, (92)

where Pij is the power flowing from subsystem i to j , ω is the (mean) frequency of the source
and d̄i and d̄j are the mean densities10 of eigenfrequencies (or modes) of the (uncoupled)
subsystems as discussed in section 2.2.1. Furthermore, ηij are coupling loss factors and

10 Modal densities are generally denoted as ni in the engineering literature; we keep here in line with the notation
adopted in section 2.
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(a)

(b) (c)

Figure 20. From (Cotoni et al 2005): energy frequency response of a structure consisting of
a cylinder and three plates (a); plate 1 is driven by a point force and the response is measured
in plates 2 (b) and 3 (c). Gray: different samples (extra loads, different source and receiver
positions); fluctuating black: mean over all samples; smooth solid line: SEA prediction; dashed
line: theoretical bounds of 99% confidence interval.

Ei,Ej are the total vibrational energies stored in the subsystems. After setting up a power
balance equation for each subsystem including possible source terms as well as dissipation, one
obtains a set of linear equations which can be solved for the unknown energies Ei . Estimates
for the modal densities can be obtained from Weyl’s law, the coupling constants ηij can be
estimated from experimental or numerical data (Mace and Shorter 2000, Mace 2003, 2005) or
in terms of a local analysis assuming random wave fields on both sides of the boundary (Lyon
and DeJong 1995). Note that the wave energies Ei per subcomponent are related to the square
of the amplitude of the wave-field integrated over the subsystem. SEA gives mean values for
these energies in the same way as Weyl’s law gives the mean density of eigenfrequencies or the
mean level staircase function such as shown in figure 2. It can not account for the fluctuations
in the signal when for example viewed as a function of ω which are due to resonance or
interference effects and reveal the true wave nature of the problem, see figure 20.

SEA is often regarded as a statistical theory in the sense that averaging over an ensemble
of similar systems is deemed necessary; this is slightly misleading as the mean can also be
defined for a single system. In practical applications, the mean is obtained by performing
local frequency averaging.

The validity of an SEA treatment is based on assumptions such as the so-called coupling
power proportionality, equation (92), stating that power flows along the energy gradient just
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like thermal energy does along the temperature gradient (Lyon and DeJong 1995); furthermore,
it is assumed that the systems have no memory, that is, the coupling constants ηij depend
only on the properties of the subsystems i and j ; and thirdly, that the eigenfunctions of the
(uncoupled) subsystem behave similarly and can locally be described in terms of random
Gaussian fields (diffusive wave fields). Weak coupling between subsystems is often cited as
a further condition (Langley 1990). In a wave chaos context, the SEA assumptions may be
formulated as follows: the underlying ray dynamics in each subsystems is chaotic, the escape
rates for each subsystem are small and one works in the high-frequency limit where a high
modal density favours equipartition of the energy between modes. Details of the subsystems
become irrelevant due to the universality of the spectral correlations and only the volume of
the subsystem and the coupling mechanism enter the theory. Explicit bounds for the validity
of the SEA theory have been given by Mace (2003, 2005) calculating the SEA parameters
directly from an FE solution for relative simple model systems and comparing with the SEA
prediction.

By the nature of the technique, only relatively rough estimates for energy distributions
can be obtained. Still, for high-frequency noise sources, SEA or variants thereof are often
the method of choice. ‘Exact’ solution tools such as finite element (FE) or boundary element
methods become both too expensive computationally and unreliable, that is, small uncertainties
in the systems may lead to very different outputs. One of the big challenges in mechanical
engineering is the so-called mid-frequency problem, that is, handling the frequency range
which is out of reach for ‘exact’ numerical methods but not yet in the high-frequency regime
where a purely statistical treatment may suffice. SEA has been discussed as a starting point
for penetrating the mid-frequency regime by employing hybrid methods based on combining
an FE and SEA treatment (Langley and Bremner 1999, Mace and Shorter 2000, Shorter and
Langley 2005). An approach similar in spirit is the so-called ‘fuzzy structure theory’ by
Soize (1993, 2003, 2005) where randomness is directly introduced in the set of (sub-)system
parameters.

Theoretical work on predicting the variance of the energies found in each subsystem
for an ensemble of similar systems (or by considering a frequency interval) has provided a
bridge towards spectral statistics and ultimately RMT. For such an analysis, the statistics of the
eigenfrequency spectrum of the sub-systems are important, see also section 3.2.4. Whereas
historically a Poissonian distribution or ad hoc model probability distributions were assumed
(Lyon 1969, Davy 1981, 1987, Lyon and DeJong 1995, Langley 1999), a random matrix point
of view as presented in section 3.2 is now generally accepted (Soize 2003, 2005, Langley
and Brown 2004a, 2004b). Using the approximative results by Langley and Brown (2004a,
2004b) valid for single systems, Langley and Cotoni (2004) developed a reliable method for
calculating the variance for multi-component systems making use of power-balance conditions
between the subsystems; the method is expected to work well for systems, for which SEA
gives a good approximation of the mean and the subsystems follow GOE statistics (when
isolated). This has been confirmed in numerical (Langley and Cotoni 2004) and experimental
studies (Cotoni et al 2005), see figure 20.

4. Diffraction, curvature and anisotropy

Diffraction, elastic waves on curved bodies and anisotropic materials lead to new effects which
are beyond the ray versus wave chaos picture for isotropic and homogeneous media discussed
so far. We will briefly summarize some know results and point out connections to wave chaos
applications.
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4.1. Diffraction

The simple ray theory discussed in section 1.2 breaks down or needs to be modified when
considering bodies with curved surfaces, curved plates such as shells or wave solutions
near corners and point/line defects. Including diffraction effects (Keller and Karal 1960) is
important when modelling materials with mechanical defects (Achenbach et al 1982) and play
a role in semiclassical expressions such as the density of states as discussed in section 2.2 in the
low-to-medium frequency regime. Below we shall discuss typical diffractive phenomena such
as surface waves occurring in elastodynamics. We first give an overview over surface waves
in the case of no curvature and will then move on to the general case of curved boundaries.
Diffractive effects at corners and wedges will be briefly reviewed at the end of this section.

4.1.1. Surface waves on flat boundaries. The general problem of determining the elastic
Green function with traction free boundary conditions in an infinite half space is called the
Lamb problem (Ewing et al 1957, Brechovskich 1980). It does not admit closed form solutions
but can be written in terms of an integral representation. The asymptotic analysis reveals that
besides direct geometric rays and rays involving mode conversion at impact with the boundary,
there are further contributions which can be interpreted as surface waves. The most prominent
one is the Rayleigh earthquake wave, see also (53), which can be associated with a pole in the
reflection coefficients (23) entering the integral representation of the Green function. Another
surface contribution is due to head waves which occur when an incoming transverse wave
converts to a fast longitudinal wave at the critical angle where the longitudinal wave glances
along the boundary. In the integral representation of the Green function, these wave types
appear as branch cuts in k-space (Brechovskich 1980).

Thus, the infinite half-space problem supports the Rayleigh surface waves and head waves
at the boundary. The surface wave that carries most energy in, for example, an earthquake is
the Rayleigh wave. This wave moves without attenuation along the boundary with a velocity
slightly lower than the transverse wave, decays exponentially into the medium and propagates
without dispersion. Head waves moving with the wave speed of longitudinal waves are
faster than Rayleigh waves and act as early warning systems for earthquakes. They decay,
however algebraically along the boundary. Head wave contributions can also be observed
in microwaves where these wave types are called lateral waves. Glancing rays in quantum
billiards were considered by Sieber et al (1995). Head wave contributions have not been
considered in wave chaos except in a ray splitting billiards by Blümel et al (1996a, 1996b),
see section 2.3.

Another surface contribution is the so-called pseudo-Rayleigh wave which like the
Rayleigh wave corresponds to a pole in the reflection coefficients (23). This wave is a
leaky wave with a complex wave number in the direction along the boundary. It therefore
looses amplitude exponentially with distance and is not considered a proper surface wave.

At the interface between two media propagating waves, so-called Stonely waves
(Brechovskich 1980, Ewing et al 1957) may be supported. In the case of layers of finite
thickness the corresponding waves are called Love waves. They are transversal waves
travelling inside the layer in the limit when the wavelength becomes small compared to
the thickness of the layer. Such waves occur for instance in layered regions of the earth or
in thin films on top of a secondary solid half space.

4.1.2. Surface waves on curved boundaries. The effects of curvature on surface waves
have been studied by Viktorov (1967) and Izbicki et al (1998) who investigated the specific
example of scattering on a circular cavity. Viktorov (1967) focused on Rayleigh waves and
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their attenuation whereas Izbicki et al (1998) also treated pseudo-Rayleigh waves and two
kinds of so-called Franz creeping waves (Franz 1954) to be discussed in more detail below.
Izbicki et al (1998) considered the full scattering problem and found in the limit of high
wave numbers the scattering determinant (39) to be related to (53), the Rayleigh equation
for the infinite half-plane problem. This and further asymptotic analysis allowed to group
the scattering poles into four types: Rayleigh, pseudo-Rayleigh and transversal respective
longitudinal Franz waves.

Rayleigh waves The Rayleigh and the pseudo-Rayleigh waves were originally discussed in
the context of an infinite half plane but can also be found for curved boundaries at high
wave numbers. In the case of cavities, curvature introduces dispersion and attenuation along
the boundary. A general discussion of dispersion of Rayleigh waves was given by Gregory
(1971). He also showed that Rayleigh wave packets move on geodesics on the surfaces of
isotropic solids. A dispersion relation for the Rayleigh wave in the case of a circular disc was
studied by Rulf (1969) and Izbicki et al (1998). The wave number itself has an imaginary
part which becomes exponentially small with increasing frequency (Viktorov 1967). Hence,
at wavelengths small compared to the radius of curvature, the Rayleigh wave can propagate
with virtually no attenuation almost being a pure surface wave. Rayleigh waves are therefore
less attenuated compared to pseudo-Rayleigh waves and, hence, are expected to give the
most important contribution. The influence of curvature on the attenuation in dielectrics with
impedance conditions was discussed by Berry (1975) in the electromagnetic case.

Besides existing as pure surface waves, it is also possible to excite Rayleigh waves from
the bulk or re-radiate back from a Rayleigh wave into the bulk. The corresponding launching
and excitation coefficients were given by Keller and Karal (1960, 1964). These diffraction
coefficients become exponentially small for high-frequencies scaling asymptotically as
exp(−ωTi) where the coefficients Ti may be interpreted as an imaginary travelling time (Rulf
1969, Doolittle and Überall 1968). Rulf (1969) considered cylindrical geometries; solutions to
the interior and exterior problem were given and longitudinal as well as transverse line sources
were studied. For the interior problem, Rulf (1969) showed that the excitation of Rayleigh
waves takes place by waves with complex wave numbers. These Rayleigh waves shed waves
back into the bulk being exponentially damped away from the boundary. The geometrical
theory of diffraction for surface waves as outlined by Keller and Karal (1964) were found
to be less accurate at intermediate frequencies, for instance with respect to dispersion (Rulf
1969). This is in contrast to, for example, the scalar Helmholtz case (Keller and Karal 1960)
or electromagnetism where diffraction theory remains valid for wavelengths comparable to
the radius of curvature. Doolittle and Überall (1968) studied the more complicated problem of
acoustic pressure waves impinging on an elastic cylinder. The imaginary time Ti was found to
be small relative to the real time for transverse waves coupling to Rayleigh waves. Therefore,
at finite frequencies such rays may have a large contribution.

Besides this additional imaginary time, the diffraction coefficients also contain amplitude
prefactors which decay like ω1/2 with frequency. This is interpreted by Keller and Karal
(1964) as a fractional half derivative in the time domain.

Despite the exponential suppression, there is evidence that closed orbits containing
segments of Rayleigh surface propagation contribute to semiclassical expressions, at least
at intermediate frequencies. Søndergaard (2001) and Wirzba et al (2005) considered the
exterior scattering from two cavities in an elastic medium, see also section 2.2.3. The Wigner–
Smith time delay as defined in section 2.1.1 was calculated numerically in a low frequency



R498 Topical Review

region. Similar to the length spectra of quantum billiards, the time delay was found to contain
fluctuations corresponding to trapped orbits and some of these were of the Rayleigh type.

Franz creeping waves. The remaining scattering poles in the cavity case (Izbicki et al 1998)
besides Rayleigh and pseudo-Rayleigh waves are similar to those discussed by Franz in the
scalar Helmholtz case (Franz 1954, Keller and Karal 1960). These poles and the pseudo-
Rayleigh poles are accompanied by strong exponential decay along the surface. Hence, they
are only expected to show up at low frequencies. These poles can be of longitudinal and
transversal polarization. Closed orbits containing creeping segments have been found in the
scalar Helmholtz case in scattering from discs (Vattay et al 1994, Wirzba and Rosenqvist
1996, Wirzba 1999). Closed, creeping orbits were incorporated into cumulant expansions,
(46), of the scattering determinant (39). This made it possible to classify strongly damped
scattering resonances deeper in the complex k-plane and to improve the agreement between
semiclassical and numerical calculations for small k.

4.1.3. Wedges and corners. In the scalar case, the general theory of diffraction for wedges has
been developed by Keller and Karal (1960). These ideas have been pursued also in quantum
chaos. For a scattering problem with only diffractive orbits, Whelan (1996) combined the zeta
function formalism with that of wedge diffraction. Another example is the case of pseudo-
integrable billiards, where diffractive orbits hitting the corners were found to have a significant
contribution even in the semiclassical limit (Bogomolny et al 2000).

The free elastic wedge is a difficult problem which does not admit separation of variables
in general (not even if the angle is rational e.g. π/2); integral representations have been given
by Babich et al (2000, 2004).

4.2. Including curvature: Shells

Shells are important in many civil applications serving as structural elements in cars and
aeroplanes. Shell theory started with the building of domes and with the attempt to understand
spectra of church bells (Rayleigh 1890). Shells in architecture are often designed to have wide
span and to be of small mass but also to be sufficiently strong. For an introduction into the
acoustic properties of bells, see Rossing (1984).

In shell theory the dimensionality of the problem is reduced by considering the field only
on the curved two-dimensional middle section of the shell and not in the full three-dimensional
volume. There is a large literature on governing equations for shells, see the monographs of
Gol’denveizer (1961) and Flügge (1972) as well as a recent article by Søndergaard (2007)
for a mathematical introduction. The simplest form of a shell theory by Kirchoff–Love is
a curved formulation of the theory for plates. To leading order, the flexural vibrations obey
a biharmonic wave equation (section 1.2.2) whereas the in-plane modes follow conventional
two-dimensional vectorial elasticity (section 1.2.3) with the use of covariant derivatives to
include curvature. Thus, in principle the same questions and methods of wave chaos can be
applied to the spectral theory of shells.

Kirchoff–Love’s shell theory is known to be less accurate for higher modes, that is, in the
high-frequency limit where the bulk properties of the shell become important. A ray description
is expected to work for the intermediate part of the spectrum, where the wavelengths are much
larger than the thickness. Rays are replaced by geodesics (Gol’denveizer 1961, Safarov and
Vasil’ev 1992); at sufficiently small wavelengths—which yet are larger than the thickness
of the shell—conventional WKB analysis yields that wave splitting occurs only among the
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Figure 21. The three slowness sheets of anisotropic quartz (Søndergaard et al 2004).

in-plane vibrations and that the trace formula for the density of states can be separated into
in-plane and flexural contributions.

New effects enter when the wavelengths become comparable to the radii of curvature as
discussed by Pierce (1991) and Norris and Rebinsky (1994). The bi-characteristics are no
longer geodesics but are also influenced by a potential. This potential depends on the position
but also on the direction of the momentum. Although this result was found for the particular
simple Donnel shell theory, see Flügge (1972), similar effects are expected to occur for other
shell theories.

4.3. Anisotropic elastic resonators

The review has focused on isotropic elastic materials, so far. However, some of the best
resonators are made of anisotropic single crystals. It is therefore of interest to extend the
discussion to three-dimensional anisotropic media.

4.3.1. Background. Elastic anisotropy (Landau and Lifshitz 1959) manifests itself in a more
general elasticity tensor obeying the symmetries

cijkl = cjikl = cij lk = cklij (93)

corresponding to at most 21 elastic constants. The stress tensor becomes

σij = cijklukl with ukl = 1

2

(
∂uk

∂xl

+
∂ul

∂xk

)
(94)

and the elastic wave equation (14) takes on the form

cijkl

∂2ul

∂xj ∂xk

+ ρω2ui = 0. (95)

The free boundary conditions can be written as in equation (21).
In k-space the corresponding wave vectors depend linearly on the given angular velocity

ω. In elastodynamics, this has lead to the introduction of a conveniently scaled momentum

s = k/ω, (96)

the so-called slowness. The strongly anisotropic behaviour of the slowness is shown in
figure 21.

4.3.2. Smooth counting function. In section 2.2.1, we discussed Weyl theory in the isotropic
case. In the anisotropic case governed by equation (95), the notation of ‘phase space’ has to
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be modified. A derivation of the leading term in the Weyl formula for anisotropic media has
been given by Søndergaard et al (2004) and the result has been compared with experimental
data of measured resonances of a single-crystal quartz sphere. In that experiment, a sphere
of the size of a small grape fruit was excited by various transducers. The resonance positions
were extracted using an advanced filtering and fitting algorithm based on maximum entropy
methods. Using this method, approximately 40 000 resonances could be isolated.

The wave equation (95) does not admit closed form solutions even for spherical
symmetries. The leading Weyl term was calculated using a suitable representation of the
Green function via the Radon transform following the work of Burridge (1967) and Wang et al
(1995). After taking the trace, the leading term in the counting function of eigenmodes could
be determined, which is—like in the isotropic case—given by the available phase-space volume
(Søndergaard et al 2004). In the anisotropic case this volume has a more complicated shape
than in the isotropic case: it consists of three sheets and is a so-called sextic algebraic surface
whose volume Vs must be calculated numerically. That volume together with the physical
volume of the resonator Vx determines the counting function if the material properties are
assumed constant within the resonator. Thus the number of states as a function of frequency
f goes to leading order as

N(f ) = VxVsf
3. (97)

4.3.3. Evolution of open rays. Presently there are no discussions of closed orbits and trace
formulae in the literature in the anisotropic case. However, there exists a body of work on
the ray dynamics associated with anisotropy. In the anisotropic case, there is a discrepancy
in direction between the wave vector and the group velocity, referred to as ‘extraordinary
refraction’ (Musgrave 1970, Auld 1973). Hence, increments in configuration space are no
longer parallel with the momentum but the group velocity. Nevertheless, the tangential
momentum is still conserved at impact with boundaries. Thus, the tangential part of the wave
vector remains unchanged as in the isotropic case. The dispersion surface is no longer simple,
so the normal wave vector of a reflected wave can be quite different from that of the incoming
wave. In particular, orbits as seen in configuration space only, may no longer seem to fulfil
the law of reflection even if mode conversion does not occur. In conclusion, ray trajectories
in an anisotropic resonator are very different from those of an isotropic cavity. Regarding
the evolution of the amplitude of wave packets, there are particular directions in the crystal
where decay is considerably weaker than (kr)−1 (Musgrave 1970). This has been observed
experimentally by Wichard and Dietsche (1992) and Schwab et al (2000) for heat transport in
crystals and is called phonon-focusing.

5. Summary and conclusions

The review aims at describing wave phenomena in acoustics and elastodynamics by relating
them to an underlying classical ray dynamics. This has been done in section 2 by making
explicit connections between Green functions and related functions to ray trajectories using
semiclassical or short-wavelength asymptotics. In a second part, in section 3, we discussed
statistical approaches based mainly on the observation that statistical properties of ‘typical’
wave systems coincide with that of ensembles of random matrices. The universalities observed
are related to universality in the underlying ray dynamics for chaotic systems such as ergodicity
and exponential decay of correlations; the long time dynamics of chaotic systems looks alike
on scales small compared to the system size.
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The way of thinking advocated in this review has enormous potential and predictive
value. Small wavelength asymptotics can reach frequency regimes outside the range of direct
numerical solution methods keeping at the same time some of the details of the system which
get lost in purely statistical approaches. In the universal regime, statistical distributions can
be obtained analytically using RMT techniques. Deviations from universal behaviour can be
predicted whenever the underlying ray dynamics shows ‘non-chaotic’ features.

Wave chaos methods have so far not had a larger impact on applications in an engineering
context. This is the more surprising as wave chaos techniques are much easier to apply
and to implement in a controlled way in an acoustics setting than in, for example, quantum
systems. We hope that the present review will help to make wave chaos ideas more widely
known and accepted also among engineers, and to test the full potential of these approaches
by applying them to theories such as SEA. In fact, scattering on irregular structures producing
‘diffusive’ wave fields as considered in SEA has been studied in great detail in, for example,
disordered system theory. Many of the sophisticated methods used in this field such as
supersymmetric techniques have by now found a place in elastodynamics as described in
section 3.2.4. Remarkably, the best experimental verification of the supersymmetric prediction
of the correlation function, equation (82), has been carried out in an elastic resonators, see
section 3.2.3.

There are a wide variety of other open questions touched on in this review which deserve
mentioning. Among them are higher order corrections to Weyl’s law in elasticity, especially for
anisotropic elastic bodies or shells. Likewise, the ray dynamics including effects of ray splitting
and mode conversion have not been studied systematically. They become important when
considering the counting function on a finer scale such as in generalizations of Gutzwiller’s
trace formula introduced in section 2.2. Ray splitting adds new features to a dynamical
system rendering, for example, rectangular geometries non-integrable. The actual nature of
the dynamics and its influence on the eigenspectra and wavefunctions is still an open problem.
A semiclassical ray theory for anisotropic media or curved surfaces is largely missing.

The connection between RMT statistics and chaos will help to reshape some of the
statistical assumptions made with respect to the diffusivity of wave fields or the distribution
of eigenfrequencies and resonance widths. We have stressed throughout the review that the
RMT assumption only holds when the underlying ray dynamics is chaotic. This assumption
may, however, often not be fulfilled for structures relevant in an engineering context; build-
up structures may consist of different, weakly coupled elements such as plates connected to
frames, plate stiffeners, shells or rods fixed to plates and walls. Thus, wave chaos methods
will need to deal with coupled and strongly non-uniformly hyperbolic systems in general;
in addition, each of the elements may have quite regular features such as straight edges or
polygonal boundaries. A future task will be to use wave chaos ideas to characterize these
intermediate regimes between order and chaos; it will also be important when considering
wave effects caused by the non-diffusive part of the wave field. Such features introduce non-
universal effects, which can not be described in an RMT analysis alone. Combining statistical
tools with ray methods for a wave analysis may lead to extensions of existing SEA theories
towards a global description of wave problems in the mid-frequency regime.
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Bayer G and Niederdränk T 1993 Phys. Rev. Lett. 70 3884
Bedford A and Drumheller D S 1994 Introduction to Elastic Wave Propagation (New York: Wiley)
Beenakker C W J 1997 Rev. Mod. Phys. 69 731
Benettin G and Strelcyn J M 1978 Phys. Rev. A 17 773
Bergmann G 1984 Phys. Rep. 107 1
Berkolaiko G, Schanz H and Whitney R S 2002 Phys. Rev. Lett. 88 104101
Berkolaiko G, Schanz H and Whitney R S 2003 J. Phys. A: Math. Gen. 36 8373
Beron-Vera F J, Brown M G, Colosi J A, Tomsovic S, Virovlyansky A L, Wolfson M A and Zaslavsky G M 2003

J. Acoust. Soc. Am. 113 1226
Berry M V 1975 J. Phys. A: Math. Gen. 8 1952
Berry M V 1977a Phil. Trans. R. Soc. A 287 237
Berry M V 1977b J. Phys. A: Math. Gen. 10 2083
Berry M V 2002 J. Phys. A: Math. Gen. 35 3025
Berry M V 1981 Ann. Phys., USA 131 163
Berry M V 1985 Proc. R. Soc. A 400 229
Berry M V 1986 Quantum chaos and statistical nuclear physics Lecture Notes in Physics vol 263 ed T H Seligmann

and H Nishioka (Berlin: Springer) p 1
Berry M V 1987 Proc. R. Soc. A 413 183
Berry M V 1989 Phys. Scr. 40 335
Berry M V and Howls C J 1994 Proc. R. Soc. A 447 527
Berry M V and Keating J P 1990 J. Phys. A: Math. Gen. 23 4839
Berry M V and Tabor M 1976 Proc. R. Soc. A 349 101
Berry M V and Tabor M 1977a J. Phys. A: Math. Gen. 10 371
Berry M V and Tabor M 1977b Proc. R. Soc. A 356 375
Bertelsen P, Ellegaard C, Guhr T, Oxborrow M and Schaadt K 1999 Phys. Rev. Lett. 83 2171
Bertelsen P, Ellegaard C and Hugues E 2000 Eur. J. Phys. B 15 87
Bies W E, Lepore N and Heller E J 2003 J. Phys. A: Math. Gen. 36 1605
Biswas D 1996 Phys. Rev. E 54 1232
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Schröder M R 1954b Acustica 4 456 (1987 J. Audio Eng. Soc. 35 307 (reprinted in English))
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